A Robust Filtering Algorithm for Subpixel Reconstruction of Chain Coded Line Drawings

A robust algorithm is presented for smoothing and achieving subpixel accuracy in the reconstruction of chain coded line drawings. The algorithm does not remove sharp corners and does not need a priori knowledge of curvature statistics. A fast on-line implementation can be achieved using a table look-up. A simplified algorithm can be used for reconstructing digitized polygons.

[1]  Joseph O'Rourke,et al.  An on-line algorithm for fitting straight lines between data ranges , 1981, CACM.

[2]  S. H. Y. Hung,et al.  On the Straightness of Digital Arcs , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Chul E. Kim,et al.  Digital Convexity, Straightness, and Convex Polygons , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Michael Brady,et al.  Computational Approaches to Image Understanding , 1982, CSUR.

[5]  Herbert Freeman,et al.  Computer Processing of Line-Drawing Images , 1974, CSUR.

[6]  Thomas O. Binford,et al.  On Detecting Edges , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Chul E. Kim On cellular straight line segments , 1982, Comput. Graph. Image Process..

[8]  Manfred H. Hueckel A Local Visual Operator Which Recognizes Edges and Lines , 1973, JACM.

[9]  Robert M. Haralick,et al.  Digital Step Edges from Zero Crossing of Second Directional Derivatives , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  David L. Neuhoff,et al.  A rate and distortion analysis of chain codes for line drawings , 1985, IEEE Trans. Inf. Theory.

[11]  Jack Sklansky,et al.  Minimum-Perimeter Polygons of Digitized Silhouettes , 1972, IEEE Transactions on Computers.

[12]  J. Canny Finding Edges and Lines in Images , 1983 .

[13]  Jack Koplowitz,et al.  A More Efficient Convex Hull Algorithm , 1978, Inf. Process. Lett..

[14]  Herbert Freeman,et al.  On the Quantization of Line-Drawing Data , 1969, IEEE Trans. Syst. Sci. Cybern..

[15]  J. Goodman Introduction to Fourier optics , 1969 .

[16]  Robert P. W. Duin,et al.  Spirograph Theory: A Framework for Calculations on Digitized Straight Lines , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Jacob T. Schwartz,et al.  Finding the Minimum Distance Between Two Convex Polygons , 1981, Information Processing Letters.

[18]  Arnold W. M. Smeulders,et al.  Discrete Representation of Straight Lines , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Azriel Rosenfeld,et al.  Digital Straight Lines and Convexity of Digital Regions , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  AZRIEL ROSENFELD,et al.  Digital Straight Line Segments , 1974, IEEE Transactions on Computers.

[21]  Jack Koplowitz,et al.  On the Performance of Chain Codes for Quantization of Line Drawings , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[23]  Li-De Wu,et al.  On the Chain Code of a Line , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Chul E. Kim On the Cellular Convexity of Complexes , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  R. Brons,et al.  Linguistic Methods for the Description of a Straight Line on a Grid , 1974, Comput. Graph. Image Process..

[26]  Chul E. Kim,et al.  Three-Dimensional Digital Line Segments , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Ronald N. Bracewell,et al.  The Fourier Transform and Its Applications , 1966 .

[28]  Owen Robert Mitchell,et al.  Edge Location to Subpixel Values in Digital Imagery , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  H. B. Barlow,et al.  Reconstructing the visual image in space and time , 1979, Nature.