Generalized and quadratic eigenvalue problems with hermitian matrices.

Eigenvalue and eigenvector computations are extremely important and have various applications in engineering, physics and other scientific disciplines. The aim of this study is partly to examine the existing methods used to solve the generalized eigenvalue problem GEP and the Quadratic eigenvalue problem QEP with definite Hermitian matrices. Furthermore, the research investigates new algorithms and computer programs that reduce the cost of eigenpair (eigenvalue, eigenvector) computations and improve the speed of eigenpair solutions.

[1]  Ren-tang Li A Perturbation Bound for Definite Pencils , 2001 .

[2]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[3]  Volker Mehrmann,et al.  Vector Spaces of Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[4]  Gersgorin sets and the field of values , 1974 .

[5]  Kanti B. Datta,et al.  Matrix and linear algebra , 1991 .

[6]  Dario Bini,et al.  Computations with infinite Toeplitz matrices and polynomials , 2002 .

[7]  C. Ballantine Numerical range of a matrix: some effective criteria , 1978 .

[8]  P. Lancaster,et al.  Overdamped and Gyroscopic Vibrating Systems , 1992 .

[9]  N. Pullman Matrix theory and its applications , 1976 .

[10]  K. N. Majindar Linear combinations of Hermitian and real symmetric matrices , 1979 .

[11]  W. V. Parker Characteristic roots and field of values of a matrix , 1948 .

[12]  Nicholas J. Higham,et al.  Analysis of the Cholesky Method with Iterative Refinement for Solving the Symmetric Definite Generalized Eigenproblem , 2001, SIAM J. Matrix Anal. Appl..

[13]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[14]  M. Marcus,et al.  Field convexity of a square matrix , 1955 .

[15]  M. Naimark,et al.  The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations , 1981 .

[16]  Wallace Givens,et al.  Fields of values of a matrix , 1952 .

[17]  N. Higham,et al.  Scaling, sensitivity and stability in the numerical solution of quadratic eigenvalue problems , 2008 .

[18]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[19]  Nicholas J. Higham,et al.  Solving a Quadratic Matrix Equation by Newton's Method with Exact Line Searches , 2001, SIAM J. Matrix Anal. Appl..

[20]  Willis Lin,et al.  Numerical solutions for large sparse quadratic eigenvalue problems , 1995 .

[21]  M. Marcus,et al.  A Survey of Matrix Theory and Matrix Inequalities , 1965 .

[22]  A. Mees,et al.  Domains containing the field of values of a matrix , 1979 .

[23]  A Geršgorin inclusion set for the field of values of a finite matrix , 1973 .

[24]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[25]  Ren-Cang Li,et al.  A Perturbation Bound for Definite Pencils , 1993 .

[26]  P. Van Dooren,et al.  Elliptic and hyperbolic quadratic eigenvalue problems and associated distance problems , 2003 .

[27]  N. Higham,et al.  Detecting a definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems , 2002 .

[28]  G. Stewart Pertubation bounds for the definite generalized eigenvalue problem , 1979 .

[29]  Victor Y. Pan,et al.  Polynomial division and its computational complexity , 1986, J. Complex..

[30]  R. Bellman,et al.  A Survey of Matrix Theory and Matrix Inequalities , 1965 .

[31]  李幼升,et al.  Ph , 1989 .

[32]  Nicholas J. Higham,et al.  The Conditioning of Linearizations of Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[33]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[34]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[35]  Liang Bao,et al.  Block second-order Krylov subspace methods for large-scale quadratic eigenvalue problems , 2006, Appl. Math. Comput..

[36]  A. Markus,et al.  Introduction to the Spectral Theory of Polynomial Operator Pencils , 2012 .

[37]  D. Afolabi,et al.  Linearization of the quadratic eigenvalue problem , 1987 .

[38]  Gene H. Golub,et al.  Matrix computations , 1983 .

[39]  M. A. Kaashoek,et al.  Review: A. S. Markus, Introduction to the spectral theory of polynomial operator pencils , 1989 .

[40]  R. Mathias Perturbation Bounds for the Polar Decomposition , 1997 .

[41]  Numerical ranges of the powers of an operator , 2010 .

[42]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[43]  Qiang Ye An iterated shift-and-invert Arnoldi algorithm for quadratic matrix eigenvalue problems , 2006, Appl. Math. Comput..

[44]  Chun-Hua Guo,et al.  Algorithms for hyperbolic quadratic eigenvalue problems , 2005, Math. Comput..

[45]  Carmen Chicone,et al.  A generalization of the inertia theorem for quadratic matrix polynomials , 1998 .

[46]  Generalized eigenvalues of a definite hermitian matrix pair , 1998 .