Crystallography and morphology of various interfaces in Ti–Ni, Ti–Pd and Ni–Mn–Ga shape memory alloys

[1]  T. Hara,et al.  Effect of Heat Treatment Atmosphere on Multistage R-Phase Transformation in an Aged Ti–51.0 at%Ni Alloy , 2006 .

[2]  Jae-Hoon Kim,et al.  Effect of magnetic field on martensitic transformation temperature in Ni–Mn–Ga ferromagnetic shape memory alloys , 2006 .

[3]  Y. Ikuhara,et al.  Arrangement of multiple structural units in a [0001] Σ49 tilt grain boundary in ZnO , 2005 .

[4]  X. Ren,et al.  Physical metallurgy of Ti–Ni-based shape memory alloys , 2005 .

[5]  T. Mizoguchi,et al.  Atomic and electronic structure of [0001]/($$\bar{1}\bar{2}30$$) Σ7 symmetric tilt grain boundary in ZnO bicrystal with linear current-voltage characteristic , 2005 .

[6]  Angus I Kirkland,et al.  A versatile double aberration-corrected, energy filtered HREM/STEM for materials science. , 2005, Ultramicroscopy.

[7]  J Ringnalda,et al.  Breaking the spherical and chromatic aberration barrier in transmission electron microscopy. , 2005, Ultramicroscopy.

[8]  Yong Liu,et al.  HRTEM study of ⟨011⟩ type II twin in NiTi shape memory alloy , 2004 .

[9]  Xiaobing Ren,et al.  Origin of abnormal multi-stage martensitic transformation behavior in aged Ni-rich Ti–Ni shape memory alloys , 2004 .

[10]  Koichi Tanaka,et al.  Experimental Consideration of Multistage Martensitic Transformation and Precipitation Behavior in Aged Ni-Rich Ti-Ni Shape Memory Alloys , 2003 .

[11]  Yong Liu,et al.  Twinning and detwinning of 〈0 1 1〉 type II twin in shape memory alloy , 2003 .

[12]  M. Nishida,et al.  Direct evidence of correlation between {2 0 1̄}B19′ and {1 1 4}B2 deformation twins in Ti–Ni shape memory alloy , 2003 .

[13]  Gunther Eggeler,et al.  Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations , 2002 .

[14]  K. Enami,et al.  Combination and Interface Structure of 9R Martensite Plate Variants in Ti50.0Pd43.0Fe7.0 Shape Memory Alloy , 2002 .

[15]  T. Hara,et al.  Crystallography and morphology of twins in 9R martensite in Ti-Pd-Fe shape memory alloy , 2002 .

[16]  E. Cesari,et al.  Crystal structure of martensitic phases in Ni–Mn–Ga shape memory alloys , 2000 .

[17]  Hideyuki Aoki,et al.  Numerical Modeling of Grinding Rate in Granular Flow of Brittle Materials , 2000 .

[18]  M. Nishida,et al.  Crystallography and Boundary Structure of Twins in Ti-Ni and Ti-Pd Martensites , 2000 .

[19]  D. Shindo,et al.  Low temperature crystal structure of Ni–Mn–Ga alloys , 1999 .

[20]  A. Chiba,et al.  New deformation twinning mode of B19′ martensite in Ti-Ni shape memory alloy , 1998 .

[21]  K. Wu,et al.  Magnetic properties of the premartensitic transition in Ni 2 MnGa alloys , 1998 .

[22]  K. Morita,et al.  Structures and impurity effect on symmetric tilt boundaries of molybdenum , 1997 .

[23]  A. Chiba,et al.  Transmission electron microscopy of twins in martensite in TiPd shape memory alloy , 1997 .

[24]  K. Morita,et al.  Atomic periodicity of 〈001〉 symmetric tilt boundary in molybdenum , 1997 .

[25]  V. V. Kokorin,et al.  Large magnetic‐field‐induced strains in Ni2MnGa single crystals , 1996 .

[26]  A. Chiba,et al.  Specimen Preparation for Transmission Electron Microscopy of Twins in B19′ Martensite of Ti–Ni Shape Memory Alloys , 1996 .

[27]  V. V. Kokorin,et al.  The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system , 1995 .

[28]  A. Chiba,et al.  Electron microscopy studies of twin morphologies in B19′ martensite in the Ti-Ni shape memory alloy , 1995 .

[29]  A. Chiba,et al.  High resolution electron microscopy studies of twin boundary structures in B19′ martensite in the Ti-Ni shape memory alloy , 1995 .

[30]  H. Nakashima,et al.  Misorientation Dependence of Fracture Stress and Grain Boundary Energy in Molybdenum with 〈110〉 Symmetric Tilt-Boundaries , 1994 .

[31]  Y. Bando,et al.  Electron Microscopy Study of Twins in Martensite in a Ti-50.0 at%Ni Alloy , 1992 .

[32]  S. Pennycook,et al.  Atomic resolution Z-contrast imaging of interfaces , 1992 .

[33]  S. Miyazaki,et al.  Electron Microscopy Study of Type II Twins in γ 1 ′ Cu–Al–Ni Martensite , 1992 .

[34]  C. M. Wayman,et al.  Type II twins in self-accommodating martensite plate variants in a CuZnAl shape memory alloy , 1986 .

[35]  S. Miyazaki,et al.  On the origin of intergranular fracture in β phase shape memory alloys , 1982 .

[36]  K. Knowles A high-resolution electron microscope study of nickel-titanium martensite , 1982 .

[37]  Shuichi Miyazaki,et al.  Transformation pseudoelasticity and deformation behavior in a Ti-50.6at%Ni alloy , 1981 .

[38]  D. A. Smith,et al.  The crystallography of the martensitic transformation in equiatomic nickel-titanium , 1981 .

[39]  C. M. Wayman,et al.  Crystallographic similarities in shape memory martensites , 1979 .

[40]  C. M. Wayman,et al.  The formation of martensite and the mechanism of the shape memory effect in single crystals of Cu-Zn alloys , 1977 .

[41]  A. Deruyttere,et al.  The self-accommodating character of the β1 copper-aluminum martensite , 1973 .

[42]  K. Shimizu,et al.  Crystal structure and internal defects of equiatomic TiNi martensite , 1971 .

[43]  W. Bollmann Crystal Defects and Crystalline Interfaces , 1970 .

[44]  J.H.N. van Vucht,et al.  Martensitic transformations in gold-titanium, palladium-titanium and platinum-titanium alloys near the equiatomic composition , 1970 .

[45]  B. Bilby,et al.  The theory of the crystallography of deformation twinning , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.