Continuous Matching via Vector Field Flow

We present a new method for non‐rigid shape matching designed to enforce continuity of the resulting correspondence. Our method is based on the recently proposed functional map representation, which allows efficient manipulation and inference but often fails to provide a continuous point‐to‐point mapping. We address this problem by exploiting the connection between the operator representation of mappings and flows of vector fields. In particular, starting from an arbitrary continuous map between two surfaces we find an optimal flow that makes the final correspondence operator as close as possible to the initial functional map. Our method also helps to address the symmetric ambiguity problem inherent in many intrinsic correspondence methods when matching symmetric shapes. We provide practical and theoretical results showing that our method can be used to obtain an orientation preserving or reversing map starting from a functional map that represents the mixture of the two. We also show how this method can be used to improve the quality of maps produced by existing shape matching methods, and compare the resulting map's continuity with results obtained by other operator‐based techniques.

[1]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[2]  Dmitry Sokolov,et al.  Robust Polylines Tracing for N-Symmetry Direction Field on Triangulated Surfaces , 2013, ACM Trans. Graph..

[3]  Alexander M. Bronstein,et al.  Coupled quasi‐harmonic bases , 2012, Comput. Graph. Forum.

[4]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Denis Zorin,et al.  Robust field-aligned global parametrization , 2014, ACM Trans. Graph..

[6]  David W. Jacobs,et al.  Mesh saliency , 2005, ACM Trans. Graph..

[7]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[8]  Yücel Yemez,et al.  Eurographics Symposium on Geometry Processing 2011 Coarse-to-fine Combinatorial Matching for Dense Isometric Shape Correspondence , 2022 .

[9]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[10]  Sebastian Thrun,et al.  SCAPE: shape completion and animation of people , 2005, SIGGRAPH '05.

[11]  Guillermo Sapiro,et al.  Conformal Surface Parameterization for Texture Mapping , 1999 .

[12]  Manolis I. A. Lourakis,et al.  Estimating the Jacobian of the Singular Value Decomposition: Theory and Applications , 2000, ECCV.

[13]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[14]  Jovan Popović,et al.  Mesh-based inverse kinematics , 2005, SIGGRAPH 2005.

[15]  Sen Wang,et al.  Conformal Geometry and Its Applications on 3D Shape Matching, Recognition, and Stitching , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Leonidas J. Guibas,et al.  Non-Rigid Registration Under Isometric Deformations , 2008 .

[17]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[18]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[19]  Maks Ovsjanikov,et al.  An Operator Approach to Tangent Vector Field Processing , 2013, SGP '13.

[20]  David W. Jacobs,et al.  Mesh saliency , 2005, SIGGRAPH 2005.

[21]  H. Seidel,et al.  Isometric registration of ambiguous and partial data , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[23]  Maks Ovsjanikov,et al.  Supervised Descriptor Learning for Non-Rigid Shape Matching , 2014, ECCV Workshops.

[24]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, SIGGRAPH 2011.

[25]  Gary K. L. Tam,et al.  Registration of 3D Point Clouds and Meshes: A Survey from Rigid to Nonrigid , 2013, IEEE Transactions on Visualization and Computer Graphics.

[26]  Monica K. Hurdal,et al.  Discrete conformal methods for cortical brain flattening , 2009, NeuroImage.

[27]  Hans-Peter Seidel,et al.  Isometric registration of ambiguous and partial data , 2009, CVPR.

[28]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[29]  Hans-Peter Seidel,et al.  A Statistical Model of Human Pose and Body Shape , 2009, Comput. Graph. Forum.

[30]  Dmitry Sokolov,et al.  Tracing cross-free polylines oriented by a N-symmetry direction field on triangulated surfaces , 2013, ArXiv.

[31]  Niloy J. Mitra,et al.  Super4PCS: Fast Global Pointcloud Registration via Smart Indexing , 2019 .

[32]  Leonidas J. Guibas,et al.  Functional map networks for analyzing and exploring large shape collections , 2014, ACM Trans. Graph..

[33]  M. Kilian,et al.  Geometric modeling in shape space , 2007, SIGGRAPH 2007.

[34]  H. Gluck Almost all simply connected closed surfaces are rigid , 1975 .

[35]  Denis Zorin,et al.  Robust Field-aligned Global Parametrization : Supplement 1 , Proofs and Algorithmic Details , 2014 .

[36]  Hans-Peter Seidel,et al.  A low-dimensional representation for robust partial isometric correspondences computation , 2013, Graph. Model..

[37]  Daniel Cremers,et al.  Dense Non-rigid Shape Correspondence Using Random Forests , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Guillermo Sapiro,et al.  Sparse Modeling of Intrinsic Correspondences , 2012, Comput. Graph. Forum.

[39]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[40]  T. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, SIGGRAPH 2009.

[41]  Facundo Mémoli,et al.  Eurographics Symposium on Point-based Graphics (2007) on the Use of Gromov-hausdorff Distances for Shape Comparison , 2022 .

[42]  Alain Trouvé,et al.  Geodesic Shooting for Computational Anatomy , 2006, Journal of Mathematical Imaging and Vision.

[43]  Matthias Zwicker,et al.  Mesh-based inverse kinematics , 2005, ACM Trans. Graph..

[44]  Hugues Hoppe,et al.  Design of tangent vector fields , 2007, SIGGRAPH 2007.