Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells

[1]  Amy Young,et al.  Phosphoproteomic characterization of DNA damage response in melanoma cells following MEK/PI3K dual inhibition , 2013, Proceedings of the National Academy of Sciences.

[2]  A. Masselot,et al.  Peptide Level Immunoaffinity Enrichment Enhances Ubiquitination Site Identification on Individual Proteins , 2013, Molecular & Cellular Proteomics.

[3]  Kairong Cui,et al.  PARP-1 regulates expression of TGF-β receptors in T cells. , 2013, Blood.

[4]  A. Regev,et al.  Dynamic regulatory network controlling Th17 cell differentiation , 2013, Nature.

[5]  Richard Bonneau,et al.  A Validated Regulatory Network for Th17 Cell Specification , 2012, Cell.

[6]  J. Kolls,et al.  Targeting IL-17 and TH17 cells in chronic inflammation , 2012, Nature Reviews Drug Discovery.

[7]  Hergen Spits,et al.  Innate lymphoid cells: emerging insights in development, lineage relationships, and function. , 2012, Annual review of immunology.

[8]  V. Dixit,et al.  Phosphorylation-dependent activity of the deubiquitinase DUBA , 2012, Nature Structural &Molecular Biology.

[9]  Edward L. Huttlin,et al.  Systematic and quantitative assessment of the ubiquitin-modified proteome. , 2011, Molecular cell.

[10]  J. Bluestone,et al.  Control of TH17 cells occurs in the Small Intestine , 2011, Nature.

[11]  C. Ma,et al.  Colorectal Cancer–Derived Foxp3+IL‐17+ T Cells Suppress Tumour‐Specific CD8+ T Cells , 2011, Scandinavian journal of immunology.

[12]  Ke Wu,et al.  IL-17+ Regulatory T Cells in the Microenvironments of Chronic Inflammation and Cancer , 2011, The Journal of Immunology.

[13]  U. Hellman,et al.  PARP-1 attenuates Smad-mediated transcription. , 2010, Molecular cell.

[14]  Todd Davidson,et al.  Generation of Pathogenic Th17 Cells in the Absence of TGF-β Signaling , 2010, Nature.

[15]  U. Sack,et al.  Interleukin-17-producing T helper cells in autoimmunity. , 2010, Autoimmunity reviews.

[16]  David Komander,et al.  Breaking the chains: structure and function of the deubiquitinases , 2009, Nature Reviews Molecular Cell Biology.

[17]  C. Baecher-Allan,et al.  IL-17-producing human peripheral regulatory T cells retain suppressive function. , 2009, Blood.

[18]  D. Littman,et al.  Identification of IL-17-producing FOXP3+ regulatory T cells in humans , 2009, Proceedings of the National Academy of Sciences.

[19]  Steven P Gygi,et al.  The impact of peptide abundance and dynamic range on stable-isotope-based quantitative proteomic analyses. , 2008, Journal of proteome research.

[20]  V. Patzel,et al.  siRNA stabilization prolongs gene knockdown in primary T lymphocytes , 2008, European journal of immunology.

[21]  Chen Dong,et al.  Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. , 2008, Immunity.

[22]  E. Pietras,et al.  A Deubiquitinase That Regulates Type I Interferon Production , 2007, Science.

[23]  P. Valdez,et al.  Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis , 2007, Nature.

[24]  L. Fouser,et al.  Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides , 2006, The Journal of experimental medicine.

[25]  Steven P Gygi,et al.  A probability-based approach for high-throughput protein phosphorylation analysis and site localization , 2006, Nature Biotechnology.

[26]  J. Sterling,et al.  PARP regulates TGF-beta receptor type II expression in estrogen receptor-positive breast cancer cell lines. , 2006, Anticancer research.

[27]  F. Powrie,et al.  Cutting Edge: Cure of Colitis by CD4+CD25+ Regulatory T Cells1 , 2003, The Journal of Immunology.

[28]  M. Mann,et al.  Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. , 2003, Analytical chemistry.

[29]  D. Charnock-Jones,et al.  vavCre Transgenic mice: A tool for mutagenesis in hematopoietic and endothelial lineages , 2002, Genesis.

[30]  Jorge R. Oksenberg,et al.  Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis , 2002, Nature Medicine.

[31]  W. M. Weaver,et al.  A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. , 2001, Immunity.

[32]  P. Miossec,et al.  Human interleukin-17: A T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. , 1999, Arthritis and rheumatism.

[33]  P. Kivisäkk,et al.  Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis , 1999, Multiple sclerosis.

[34]  R. Sutherland,et al.  Identification of a human HECT family protein with homology to the Drosophila tumor suppressor gene hyperplastic discs , 1998, Oncogene.

[35]  P. Miossec,et al.  Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. , 1998, Journal of immunology.

[36]  R. Coffman,et al.  Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. , 1993, International immunology.

[37]  D. Vignali,et al.  In vitro Treg suppression assays. , 2011, Methods in molecular biology.