Reply to arXiv:1704.08516 "A note on singular and non-singular black holes"

Recently it has been claimed in [1] that the curvature singularity is present even in the so-called regular black hole solutions of the Einstein equations. In this brief note we show that this criticism is devoid of any physical content.

[1]  S. Zerbini,et al.  A note on singular and non-singular black holes , 2017, 1704.08516.

[2]  V. Frolov,et al.  Quantum radiation from an evaporating nonsingular black hole , 2017, 1704.03043.

[3]  O. Sert Regular Black Hole Solutions of the Non-minimally Coupled $Y(R)F^2$ Gravity , 2015, 1512.01172.

[4]  V. Frolov Mass Gap for Black-Hole Formation in Higher-Derivative and Ghost-Free Gravity. , 2015, Physical review letters.

[5]  C. Bambi,et al.  Terminating black holes in asymptotically free quantum gravity , 2013, 1306.1668.

[6]  P. Nicolini Nonlocal and generalized uncertainty principle black holes , 2012, 1202.2102.

[7]  J. Moffat,et al.  Black holes in an ultraviolet complete quantum gravity , 2010, 1010.0680.

[8]  P. Nicolini,et al.  Charged rotating noncommutative black holes , 2010, 1005.5605.

[9]  E. Spallucci,et al.  Kerrr black hole: The lord of the string , 2010, 1003.3918.

[10]  P. Nicolini,et al.  Noncommutative geometry-inspired dirty black holes , 2009, 0902.4654.

[11]  P. Nicolini Noncommutative Black Holes, The Final Appeal To Quantum Gravity: A Review , 2008, 0807.1939.

[12]  P. Nicolini,et al.  Non-commutative geometry inspired higher-dimensional charged black holes , 2008, 0801.3519.

[13]  S. Ansoldi Spherical black holes with regular center: a review of existing models including a recent realization with Gaussian sources , 2008, 0802.0330.

[14]  S. Ansoldi,et al.  Non-commutative geometry inspired charged black holes , 2006, gr-qc/0612035.

[15]  K. Bronnikov,et al.  Regular black holes and black universes , 2006, gr-qc/0611022.

[16]  L. Modesto Gravitational Collapse in Loop Quantum Gravity , 2006, gr-qc/0610074.

[17]  T. Rizzo Noncommutative Inspired Black Holes in Extra Dimensions , 2006, hep-ph/0606051.

[18]  K. Bronnikov,et al.  Regular phantom black holes. , 2005, Physical review letters.

[19]  P. Nicolini,et al.  Noncommutative geometry inspired Schwarzschild black hole , 2005, gr-qc/0510112.

[20]  L. Modesto Loop quantum black hole , 2005, gr-qc/0509078.

[21]  P. Nicolini LETTER TO THE EDITOR: A model of radiating black hole in noncommutative geometry , 2005, hep-th/0507266.

[22]  P. Nicolini,et al.  The fate of radiating black holes in noncommutative geometry , 2005, hep-th/0507226.

[23]  S. Hayward FORMATION AND EVAPORATION OF REGULAR BLACK HOLES , 2005 .

[24]  L. Modesto Disappearance of the black hole singularity in loop quantum gravity , 2004, gr-qc/0407097.

[25]  Alberto A. Garćıa,et al.  Four-parametric regular black hole solution , 2004, hep-th/0403229.

[26]  I. Dymnikova Spherically symmetric space-time with the regular de Sitter center , 2003, gr-qc/0304110.

[27]  K. Bronnikov,et al.  Nonsingular vacuum cosmologies with a variable cosmological term , 2003, gr-qc/0302029.

[28]  I. Dymnikova The cosmological term as a source of mass , 2001, gr-qc/0112052.

[29]  E. Ay'on-Beato,et al.  The Bardeen model as a nonlinear magnetic monopole , 2000, gr-qc/0009077.

[30]  E. Ay'on-Beato,et al.  New regular black hole solution from nonlinear electrodynamics , 1999, hep-th/9911174.

[31]  Alberto A. Garćıa,et al.  Non-Singular Charged Black Hole Solution for Non-Linear Source , 1999, gr-qc/9911084.

[32]  E. Ay'on-Beato,et al.  Regular black hole in general relativity coupled to nonlinear electrodynamics , 1998, gr-qc/9911046.

[33]  H. Balasin Distributional energy - momentum tensor of the extended Kerr geometry , 1997 .

[34]  H. Balasin,et al.  The ultrarelativistic Kerr geometry and its energy-momentum tensor , 1994, gr-qc/9405053.

[35]  H. Balasin,et al.  Distributional energy--momentum tensor of the Kerr--Newman spacetime family , 1993, gr-qc/9312028.

[36]  H. Balasin,et al.  The energy-momentum tensor of a black hole, or what curves the Schwarzschild geometry? , 1993, gr-qc/9305009.

[37]  I. Dymnikova Vacuum nonsingular black hole , 1992 .

[38]  Frolov,et al.  Black holes as possible sources of closed and semiclosed worlds. , 1990, Physical review. D, Particles and fields.

[39]  Poisson,et al.  Stability of the Schwarzschild-de Sitter model. , 1990, Physical review. D, Particles and fields.

[40]  Palmer,et al.  Evolution of bubbles in a vacuum. , 1989, Physical review. D, Particles and fields.

[41]  V. Frolov,et al.  Through a black hole into a new universe , 1989 .