Quantum Computing since Democritus

Written by noted quantum computing theorist Scott Aaronson, this book takes readers on a tour through some of the deepest ideas of maths, computer science and physics. Full of insights, arguments and philosophical perspectives, the book covers an amazing array of topics. Beginning in antiquity with Democritus, it progresses through logic and set theory, computability and complexity theory, quantum computing, cryptography, the information content of quantum states and the interpretation of quantum mechanics. There are also extended discussions about time travel, Newcomb's Paradox, the anthropic principle and the views of Roger Penrose. Aaronson's informal style makes this fascinating book accessible to readers with scientific backgrounds, as well as students and researchers working in physics, computer science, mathematics and philosophy.

[1]  Silvio Micali,et al.  How to construct random functions , 1986, JACM.

[2]  Oded Regev,et al.  On lattices, learning with errors, random linear codes, and cryptography , 2009, JACM.

[3]  N. V. Vinodchandran A note on the circuit complexity of PP , 2005, Theor. Comput. Sci..

[4]  Rahul Santhanam,et al.  Circuit lower bounds for Merlin-Arthur classes , 2007, STOC '07.

[5]  Alexander A. Razborov,et al.  Natural Proofs , 1997, J. Comput. Syst. Sci..

[6]  Alexei Y. Kitaev,et al.  Parallelization, amplification, and exponential time simulation of quantum interactive proof systems , 2000, STOC '00.

[7]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[8]  Ryan Williams,et al.  Non-uniform ACC Circuit Lower Bounds , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[9]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[10]  Ketan Mulmuley,et al.  The GCT program toward the P vs. NP problem , 2012, Commun. ACM.

[11]  Avi Wigderson,et al.  Algebrization: A New Barrier in Complexity Theory , 2009, TOCT.

[12]  Daniel A. Spielman,et al.  PP is closed under intersection , 1991, STOC '91.

[13]  Miklós Ajtai,et al.  ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..

[14]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[15]  Alexander A. Razborov,et al.  On the method of approximations , 1989, STOC '89.

[16]  R. Jozsa,et al.  Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Craig Gentry,et al.  Fully homomorphic encryption using ideal lattices , 2009, STOC '09.

[18]  M. Brass,et al.  Unconscious determinants of free decisions in the human brain , 2008, Nature Neuroscience.

[19]  Leonard M. Adleman,et al.  Quantum Computability , 1997, SIAM J. Comput..

[20]  Masao Nagasawa,et al.  Schrödinger equations and diffusion theory , 1993, Monographs in mathematics.

[21]  David Deutsch,et al.  The fabric of reality : the science of parallel universes-- and its implications , 1997 .

[22]  Carsten Lund,et al.  Algebraic methods for interactive proof systems , 1992, JACM.

[23]  John A Smolin,et al.  Can closed timelike curves or nonlinear quantum mechanics improve quantum state discrimination or help solve hard problems? , 2009, Physical review letters.

[24]  G. D’Ariano,et al.  Informational derivation of quantum theory , 2010, 1011.6451.

[25]  Solomon Feferman,et al.  Alfred Tarski: Life and Logic , 2004 .

[26]  Rahul Jain,et al.  QIP = PSPACE , 2011, JACM.

[27]  Chris Peikert,et al.  Public-key cryptosystems from the worst-case shortest vector problem: extended abstract , 2009, STOC '09.

[28]  Scott Aaronson,et al.  The learnability of quantum states , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  Andrew Chi-Chih Yao,et al.  Theory and Applications of Trapdoor Functions (Extended Abstract) , 1982, FOCS.

[30]  Lance Fortnow,et al.  Are There Interactive Protocols for CO-NP Languages? , 1988, Inf. Process. Lett..

[31]  Moni Naor,et al.  Number-theoretic constructions of efficient pseudo-random functions , 2004, JACM.

[32]  B. Libet Do we have free will , 2005 .

[33]  J. Gott Implications of the Copernican principle for our future prospects , 1993, Nature.

[34]  Scott Aaronson,et al.  Quantum computing, postselection, and probabilistic polynomial-time , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  Adi Shamir,et al.  IP = PSPACE , 1992, JACM.

[36]  Leonid A. Levin,et al.  A Pseudorandom Generator from any One-way Function , 1999, SIAM J. Comput..

[37]  Samir D. Mathur The Fuzzball proposal for black holes: An Elementary review , 2005 .

[38]  Cynthia Dwork,et al.  A public-key cryptosystem with worst-case/average-case equivalence , 1997, STOC '97.

[39]  Seth Lloyd,et al.  Quantum mechanics of time travel through post-selected teleportation , 2010, 1007.2615.