Lax Extensions of Coalgebra Functors

We discuss the use of relation lifting in the theory of set-based coalgebra. On the one hand we prove that the neighborhood functor does not extend to a relation lifting of which the associated notion of bisimilarity coincides with behavorial equivalence.

[1]  Yde Venema,et al.  Uniform Interpolation for Monotone Modal Logic , 2010, Advances in Modal Logic.

[2]  G. M. Kelly,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.

[3]  Helle Hvid Hansen,et al.  Bisimulation for Neighbourhood Structures , 2007, CALCO.

[4]  Alexandru Baltag,et al.  A Logic for Coalgebraic Simulation , 2000, CMCS.

[5]  Paul Blain Levy,et al.  Similarity Quotients as Final Coalgebras , 2011, FoSSaCS.

[6]  Ian Stark,et al.  Free-Algebra Models for the pi-Calculus , 2005, FoSSaCS.

[7]  Alexander Kurz,et al.  Algebra and Coalgebra in Computer Science, Third International Conference, CALCO 2009, Udine, Italy, September 7-10, 2009. Proceedings , 2009, CALCO.

[8]  Bart Jacobs,et al.  Simulations in Coalgebra , 2003, CMCS.

[9]  Yde Venema,et al.  Completeness for the coalgebraic cover modality , 2012, Log. Methods Comput. Sci..

[10]  Christoph Schubert,et al.  Extensions in the theory of lax algebras , 2010 .

[11]  Johannes Marti Relation Liftings in Coalgebraic Modal Logic , 2011 .

[12]  Dirk Pattinson,et al.  Coalgebraic modal logic: soundness, completeness and decidability of local consequence , 2003, Theor. Comput. Sci..

[13]  Alexander Kurz,et al.  Equational Coalgebraic Logic , 2009, MFPS.

[14]  J. Adámek,et al.  Automata and Algebras in Categories , 1990 .

[15]  Bart Jacobs,et al.  Simulations in Coalgebra , 2003, CMCS.

[16]  Helle Hvid Hansen,et al.  Neighbourhood Structures: Bisimilarity and Basic Model Theory , 2009, Log. Methods Comput. Sci..

[17]  H. Peter Gumm,et al.  Types and coalgebraic structure , 2005 .

[18]  Helle Hvid Hansen,et al.  A Coalgebraic Perspective on Monotone Modal Logic , 2004, CMCS.

[19]  Lutz Schröder,et al.  Expressivity of coalgebraic modal logic: The limits and beyond , 2008, Theor. Comput. Sci..

[20]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[21]  Albert Thijs,et al.  Simulation and fixpoint semantics , 1996 .