Unified correspondence and proof theory for strict implication
暂无分享,去创建一个
[1] Kazushige Terui,et al. Expanding the Realm of Systematic Proof Theory , 2009, CSL.
[2] Willem Conradie,et al. Chapter 1 Unified Correspondence , 2014 .
[3] Magdalena Fabisiak,et al. THE LOGIC K OF STRICT IMPLICATION AND ITS RELATIVES , 2004 .
[4] Valentin Goranko,et al. Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..
[5] Naoki Kobayashi,et al. Resource Usage Analysis for the Pi-Calculus , 2006, VMCAI.
[6] Yde Venema,et al. A Sahlqvist theorem for distributive modal logic , 2005, Ann. Pure Appl. Log..
[7] Willem Conradie,et al. Algebraic modal correspondence: Sahlqvist and beyond , 2016, J. Log. Algebraic Methods Program..
[8] Félix Bou Moliner. Strict-weak languages: an analysis of strict implication , 2004 .
[9] Alessandra Palmigiano,et al. Dual characterizations for finite lattices via correspondence theory for monotone modal logic , 2014, J. Log. Comput..
[10] Dirk Pattinson,et al. Correspondence between Modal Hilbert Axioms and Sequent Rules with an Application to S5 , 2013, TABLEAUX.
[11] Nicola Olivetti,et al. Nested Sequent Calculi for Conditional Logics , 2012, JELIA.
[12] Alessandra Palmigiano,et al. Jónsson-style canonicity for ALBA-inequalities , 2017, J. Log. Comput..
[13] Michael Zakharyaschev,et al. Modal Logic , 1997, Oxford logic guides.
[14] Alessandra Palmigiano,et al. Unified Correspondence as a Proof-Theoretic Tool , 2016, J. Log. Comput..
[15] Kosta Došen,et al. Modal Translations in K and D , 1993 .
[16] Mohammad Ardeshir,et al. Basic Propositional Calculus I , 1998, Math. Log. Q..
[17] Paolo Maffezioli,et al. Hypersequent and Labelled Calculi for Intermediate Logics , 2013, TABLEAUX.
[18] Alessandra Palmigiano,et al. Canonical extensions and relational completeness of some substructural logics* , 2005, Journal of Symbolic Logic.
[19] Alessandra Palmigiano,et al. Sahlqvist theory for impossible worlds , 2016, J. Log. Comput..
[20] Willem Conradie,et al. Canonicity results for mu-calculi: an algorithmic approach , 2017, J. Log. Comput..
[21] Brian A. Davey,et al. An Introduction to Lattices and Order , 1989 .
[22] Kazushige Terui,et al. Algebraic proof theory for substructural logics: Cut-elimination and completions , 2012, Ann. Pure Appl. Log..
[23] Albert Visser,et al. A propositional logic with explicit fixed points , 1981 .
[24] Willem Conradie,et al. Algorithmic correspondence and canonicity for non-distributive logics , 2016, Ann. Pure Appl. Log..
[25] Willem Conradie,et al. On Sahlqvist theory for hybrid logics , 2015, J. Log. Comput..
[26] Lutz Straßburger,et al. Label-free Modular Systems for Classical and Intuitionistic Modal Logics , 2014, Advances in Modal Logic.
[27] Katsumasa Ishii,et al. Sequent Calculi for Visser's Propositional Logics , 2001, Notre Dame J. Formal Log..
[28] Johan van Benthem,et al. Sahlqvist Correspondence for Modal mu-calculus , 2012, Studia Logica.
[29] Katsuhiko Sano,et al. Constructive Embedding from Extensions of Logics of Strict Implication into Modal Logics , 2016 .
[30] M. Gehrke,et al. Bounded Lattice Expansions , 2001 .
[31] Ramon Jansana,et al. A Closer Look at Some Subintuitionistic Logics , 2001, Notre Dame J. Formal Log..
[32] Ian Hacking,et al. What is strict implication? , 1963, Journal of Symbolic Logic.
[33] Ramon Jansana,et al. Bounded distributive lattices with strict implication , 2005, Math. Log. Q..
[34] Timothy A. D. Fowler,et al. Categorial Grammar: Logical Syntax, Semantics, and Processing Glyn V. Morrill (Universitat Politècnica de Catalunya)Oxford: Oxford University Press, 2011, xv+236 pp; hardbound, ISBN 978-0-19-958985-2, £ 80.00, $150.00; paperbound, ISBN 978-0-19-958986-9, £ 29.99, $55.00 , 2011, Computational Linguistics.
[35] Silvio Ghilardi,et al. The bounded proof property via step algebras and step frames , 2013, Ann. Pure Appl. Log..
[36] M. de Rijke,et al. Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.
[37] Kazushige Terui,et al. From Axioms to Analytic Rules in Nonclassical Logics , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.
[38] M. de Rijke,et al. Logic, Language and Computation , 1997 .
[39] Ori Lahav,et al. From Frame Properties to Hypersequent Rules in Modal Logics , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.
[40] Willem Conradie,et al. Algorithmic correspondence and canonicity for distributive modal logic , 2012, Ann. Pure Appl. Log..
[41] Rajeev Goré,et al. On the Correspondence between Display Postulates and Deep Inference in Nested Sequent Calculi for Tense Logics , 2011, Log. Methods Comput. Sci..
[42] J. Lambek. The Mathematics of Sentence Structure , 1958 .
[43] J. Michael Dunn,et al. Positive modal logic , 1995, Stud Logica.
[44] Peter Jipsen,et al. Residuated lattices: An algebraic glimpse at sub-structural logics , 2007 .
[45] Mai Gehrke,et al. Canonical Extensions, Esakia Spaces, and Universal Models , 2014 .
[46] Johan van Benthem,et al. Minimal predicates, fixed-points, and definability , 2005, Journal of Symbolic Logic.
[47] Wojciech Buszkowski,et al. Nonassociative Lambek Calculus with Additives and Context-Free Languages , 2009, Languages: From Formal to Natural.
[48] Joachim Lambek,et al. On the Calculus of Syntactic Types , 1961 .
[49] Nick Bezhanishvili,et al. Finitely generated free Heyting algebras via Birkhoff duality and coalgebra , 2011, Log. Methods Comput. Sci..
[50] N. Kurtonina,et al. Frames and Labels. A modal analysis of categorial inference , 1995 .
[51] Greg Restall,et al. On logics without contraction , 1994 .
[52] Roy Dyckhoff,et al. Proof analysis in intermediate logics , 2012, Arch. Math. Log..
[53] Mohammad Ardeshir Behrostaghi. Aspects of basic logic , 1995 .
[54] Björn Lellmann,et al. Axioms vs Hypersequent Rules with Context Restrictions: Theory and Applications , 2014, IJCAR.
[55] Willem Conradie,et al. Canonicity and Relativized Canonicity via Pseudo-Correspondence: an Application of ALBA , 2015, ArXiv.
[56] Sara Negri,et al. Proof Analysis in Modal Logic , 2005, J. Philos. Log..
[57] Willem Conradie,et al. Algorithmic correspondence for intuitionistic modal mu-calculus , 2015, Theor. Comput. Sci..
[58] Giovanna Corsi,et al. Weak Logics with Strict Implication , 1987, Math. Log. Q..
[59] Heinrich Wansing,et al. Displaying as Temporalizing , 1997 .
[60] Michael Zakharyaschev,et al. Modal companions of intermediate propositional logics , 1992, Stud Logica.
[61] R. Ishigaki,et al. Sequent Calculi for Some Strict Implication Logics , 2008, Log. J. IGPL.
[62] Chris Fox,et al. Expressiveness and Complexity in Underspecified Semantics , 2010 .
[63] M. de Rijke,et al. Diamonds and Defaults , 1993 .
[64] Nuel Belnap,et al. The pure calculus of entailment , 1962, Journal of Symbolic Logic.
[65] M. Kracht. Power and Weakness of the Modal Display Calculus , 1996 .
[66] Kentaro Kikuchi. RELATIONSHIPS BETWEEN BASIC PROPOSITIONAL CALCULUS AND SUBSTRUCTURAL LOGICS , 2001 .
[67] Majid Alizadeh,et al. On the linear Lindenbaum algebra of Basic Propositional Logic , 2004, Math. Log. Q..