Fast-printed laser-induced-graphene pattern enabling directional thermal manipulation

[1]  T. Asaoka,et al.  Experimental demonstration of thermal cloaking metastructures designed by topology optimization , 2022, International Journal of Heat and Mass Transfer.

[2]  M. Kadic,et al.  Design of thermal cloaks with isotropic materials based on machine learning , 2022, International Journal of Heat and Mass Transfer.

[3]  Liang Gao,et al.  Robustly printable freeform thermal metamaterials , 2021, Nature Communications.

[4]  Jian Gao,et al.  Interfacial Laser‐Induced Graphene Enabling High‐Performance Liquid−Solid Triboelectric Nanogenerator , 2021, Advanced materials.

[5]  Xiaobing Luo,et al.  Inverse design of rotating metadevice for adaptive thermal cloaking , 2021 .

[6]  Xiaoping Ouyang,et al.  Particle swarm optimization for realizing bilayer thermal sensors with bulk isotropic materials , 2021, International Journal of Heat and Mass Transfer.

[7]  Jiping Huang,et al.  Controlling macroscopic heat transfer with thermal metamaterials: Theory, experiment and application , 2021, Physics Reports.

[8]  Jiping Huang,et al.  Controlling thermal waves with transformation complex thermotics , 2020, International Journal of Heat and Mass Transfer.

[9]  Qingxiang Ji,et al.  Designing thermal energy harvesting devices with natural materials through optimized microstructures , 2020, International Journal of Heat and Mass Transfer.

[10]  Junichiro Shiomi,et al.  Machine-Learning-Optimized Aperiodic Superlattice Minimizes Coherent Phonon Heat Conduction , 2020 .

[11]  Youhei Akimoto,et al.  Optimizing the structural topology of bifunctional invisible cloak manipulating heat flux and direct current , 2019, Applied Physics Letters.

[12]  Jian Gao,et al.  UV Laser‐Induced Polyimide‐to‐Graphene Conversion: Modeling, Fabrication, and Application , 2019, Small Methods.

[13]  Guoqiang Xu,et al.  Bilayer thermal harvesters for concentrating temperature distribution , 2019, International Journal of Heat and Mass Transfer.

[14]  Cheng-Wei Qiu,et al.  Encrypted Thermal Printing with Regionalization Transformation , 2019, Advanced materials.

[15]  Run Hu,et al.  Thermal illusion with twinborn-like heat signatures , 2018, International Journal of Heat and Mass Transfer.

[16]  Run Hu,et al.  Binary Thermal Encoding by Energy Shielding and Harvesting Units , 2018, Physical Review Applied.

[17]  Jiping Huang,et al.  A thermal theory for unifying and designing transparency, concentrating and cloaking , 2018 .

[18]  Youhei Akimoto,et al.  Exploring optimal topology of thermal cloaks by CMA-ES , 2018 .

[19]  James M Tour,et al.  Laser‐Induced Graphene Formation on Wood , 2017, Advanced materials.

[20]  Thomas L. Bougher,et al.  Thermal conductivity enhancement of laser induced graphene foam upon P3HT infiltration , 2016 .

[21]  Ying Li,et al.  Thermal cloak-concentrator , 2015, 1506.01532.

[22]  Junzong Feng,et al.  Study on Thermal Conductivities of Aromatic Polyimide Aerogels. , 2016, ACS applied materials & interfaces.

[23]  Ji Zhou,et al.  Simultaneously concentrated electric and thermal fields using fan-shaped structure. , 2015, Optics express.

[24]  Tsuyoshi Nomura,et al.  Design of Anisotropic Thermal Conductivity in Multilayer Printed Circuit Boards , 2015, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[25]  S. Reich,et al.  The Origin of High Thermal Conductivity and Ultralow Thermal Expansion in Copper-Graphite Composites. , 2015, Nano letters.

[26]  J. Tour,et al.  Laser-induced porous graphene films from commercial polymers , 2014, Nature Communications.

[27]  Jiping Huang,et al.  Thermally hiding an object inside a cloak with feeling , 2014 .

[28]  Sailing He,et al.  Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously. , 2014, Physical review letters.

[29]  Baowen Li,et al.  Experimental demonstration of a bilayer thermal cloak. , 2014, Physical review letters.

[30]  Fei Gao,et al.  Ultrathin three-dimensional thermal cloak. , 2014, Physical review letters.

[31]  M. Wegener,et al.  Experiments on transformation thermodynamics: molding the flow of heat. , 2012, Physical review letters.

[32]  A. Balandin,et al.  Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials , 2012 .

[33]  Yuki Sato,et al.  Heat flux manipulation with engineered thermal materials. , 2012, Physical review letters.

[34]  Jian-Shiuh Chen,et al.  Cloak for curvilinearly anisotropic media in conduction , 2008 .

[35]  C. N. Lau,et al.  PROOF COPY 020815APL Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits , 2008 .

[36]  David J. Bergman,et al.  The dielectric constant of a composite material—A problem in classical physics , 1978 .

[37]  Xiaobing Luo,et al.  Illusion Thermotics , 2018, Advanced materials.