A generalized multiclass histogram thresholding approach based on mixture modelling

This paper presents a new approach to multi-class thresholding-based segmentation. It considerably improves existing thresholding methods by efficiently modeling non-Gaussian and multi-modal class-conditional distributions using mixtures of generalized Gaussian distributions (MoGG). The proposed approach seamlessly: (1) extends the standard Otsu's method to arbitrary numbers of thresholds and (2) extends the Kittler and Illingworth minimum error thresholding to non-Gaussian and multi-modal class-conditional data. MoGGs enable efficient representation of heavy-tailed data and multi-modal histograms with flat or sharply shaped peaks. Experiments on synthetic data and real-world image segmentation show the performance of the proposed approach with comparison to recent state-of-the-art techniques. HighlightsGeneralizing thresholding to multi-modal class segmentation.Classes are modeled using mixtures of Generalized Gaussian distributions.Formulation of thresholding based on maximum likelihood estimation.Application to image foreground segmentation.

[1]  Nikhil R. Pal,et al.  Image thresholding: Some new techniques , 1993, Signal Process..

[2]  Xinggang Lin,et al.  Rayleigh-distribution based minimum error thresholding for SAR images , 1999 .

[3]  Lorenzo Bruzzone,et al.  Image thresholding based on the EM algorithm and the generalized Gaussian distribution , 2007, Pattern Recognit..

[4]  Ling-Hwei Chen,et al.  A fast iterative scheme for multilevel thresholding methods , 1997, Signal Process..

[5]  Evgueni A. Haroutunian,et al.  Information Theory and Statistics , 2011, International Encyclopedia of Statistical Science.

[6]  Korris Fu-Lai Chung,et al.  A novel image thresholding method based on Parzen window estimate , 2008, Pattern Recognit..

[7]  Jiulun Fan,et al.  Minimum error thresholding: A note , 1997, Pattern Recognit. Lett..

[8]  P. D. Thouin,et al.  Survey and comparative analysis of entropy and relative entropy thresholding techniques , 2006 .

[9]  A. D. Brink,et al.  Minimum cross-entropy threshold selection , 1996, Pattern Recognit..

[10]  Yu-Jin Zhang,et al.  Ridler and Calvard's, Kittler and Illingworth's and Otsu's methods for image thresholding , 2012, Pattern Recognit. Lett..

[11]  Bir Bhanu,et al.  Adaptive integrated image segmentation and object recognition , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[12]  Prasanta K. Panigrahi,et al.  Multilevel thresholding for image segmentation through a fast statistical recursive algorithm , 2006, Pattern Recognit. Lett..

[13]  Pau-Choo Chung,et al.  A Fast Algorithm for Multilevel Thresholding , 2001, J. Inf. Sci. Eng..

[14]  Nabih N. Abdelmalek,et al.  Maximum likelihood thresholding based on population mixture models , 1992, Pattern Recognit..

[15]  D. M. Titterington,et al.  Median-based image thresholding , 2011, Image Vis. Comput..

[16]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Kuldeep Kumar Robust Statistics, 2nd edition by P.J. Huber & E.M. Ronchetti [book review] , 2011 .

[18]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[19]  Nizar Bouguila,et al.  Finite Generalized Gaussian Mixture Modeling and Applications to Image and Video Foreground Segmentation , 2007, Fourth Canadian Conference on Computer and Robot Vision (CRV '07).

[20]  P. Deb Finite Mixture Models , 2008 .

[21]  Gabriele Moser,et al.  Generalized minimum-error thresholding for unsupervised change detection from SAR amplitude imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[22]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[23]  P.K Sahoo,et al.  A survey of thresholding techniques , 1988, Comput. Vis. Graph. Image Process..

[24]  Shu-Kai S. Fan,et al.  Image thresholding using a novel estimation method in generalized Gaussian distribution mixture modeling , 2008, Neurocomputing.

[25]  Josef Kittler,et al.  On threshold selection using clustering criteria , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[26]  Jing-Hao Xue,et al.  Threshold Selection from Image Histograms with Skewed Components Based on Maximum-likelihood Estimation of Skew-normal and Log-concave Distributions , 2011 .

[27]  Andreas E. Savakis,et al.  Adaptive document image thresholding using foreground and background clustering , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[28]  Gabriele Moser,et al.  Generalized minimum-error thresholding for unsupervised change detection from SAR amplitude imagery , 2006, IEEE Trans. Geosci. Remote. Sens..

[29]  Shu-Kai S. Fan,et al.  A fast estimation method for the generalized Gaussian mixture distribution on complex images , 2009, Comput. Vis. Image Underst..

[30]  Ralph Gross,et al.  Concurrent Object Recognition and Segmentation by Graph Partitioning , 2002, NIPS.

[31]  Nizar Bouguila,et al.  Image and Video Segmentation by Combining Unsupervised Generalized Gaussian Mixture Modeling and Feature Selection , 2010, IEEE Transactions on Circuits and Systems for Video Technology.

[32]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[33]  Fujiki Morii A note on minimum error thresholding , 1991, Pattern Recognit. Lett..

[34]  Solomon Kullback,et al.  Information Theory and Statistics , 1970, The Mathematical Gazette.

[35]  Josef Kittler,et al.  Minimum error thresholding , 1986, Pattern Recognit..

[36]  Salvatore Tabbone,et al.  Asymmetric Generalized Gaussian Mixture Models and EM Algorithm for Image Segmentation , 2010, 2010 20th International Conference on Pattern Recognition.

[37]  Chris A. Glasbey,et al.  An Analysis of Histogram-Based Thresholding Algorithms , 1993, CVGIP Graph. Model. Image Process..

[38]  Djemel Ziou,et al.  Globally adaptive region information for automatic color-texture image segmentation , 2007, Pattern Recognit. Lett..

[39]  Bülent Sankur,et al.  Survey over image thresholding techniques and quantitative performance evaluation , 2004, J. Electronic Imaging.

[40]  Prasanna K. Sahoo,et al.  Image thresholding using two-dimensional Tsallis-Havrda-Charvát entropy , 2006, Pattern Recognit. Lett..