Space‐Time Model versus VAR Model: Forecasting Electricity demand in Japan

This paper examined the forecasting performance of disaggregated data with spatial dependency and applied it to forecasting electricity demand in Japan. We compared the performance of the spatial autoregressive ARMA (SAR-ARMA) model with that of the vector autoregressive (VAR) model from a Bayesian perspective. With regard to the log marginal likelihood and log predictive density, the VAR(1) model performed better than the SAR-ARMA( 1,1) model. In the case of electricity demand in Japan, we can conclude that the VAR model with contemporaneous aggregation had better forecasting performance than the SAR-ARMA model. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  Remy Cottet,et al.  Bayesian Modeling and Forecasting of Intraday Electricity Load , 2003 .

[2]  Lambros Ekonomou,et al.  Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models , 2008 .

[3]  Antje Weyh,et al.  Regional unemployment forecasts with spatial interdependencies , 2010 .

[4]  Clive W. J. Granger,et al.  Aggregation of space-time processes , 2004 .

[5]  Xueting Zhao,et al.  Forecasting province-level $${\text {CO}}_{2}$$CO2 emissions in China , 2014 .

[6]  Min Wei,et al.  What Does the Yield Curve Tell Us About GDP Growth? , 2003 .

[7]  Frank Smets,et al.  Comparing Shocks and Frictions in Us and Euro Area Business Cycles: A Bayesian DSGE Approach , 2004, SSRN Electronic Journal.

[8]  S. Chib,et al.  Analysis of multivariate probit models , 1998 .

[9]  Tammo H. A. Bijmolt,et al.  Specification of spatial models: A simulation study on weights matrices , 2009 .

[10]  S. Chib,et al.  Bayes inference in regression models with ARMA (p, q) errors , 1994 .

[11]  A. Gelfand,et al.  Bayesian Model Choice: Asymptotics and Exact Calculations , 1994 .

[12]  J. Geweke,et al.  Optimal Prediction Pools , 2008 .

[13]  John Geweke,et al.  Federal Reserve Bank of Minneapolis Research Department Staff Report 249 Using Simulation Methods for Bayesian Econometric Models: Inference, Development, and Communication , 2022 .

[14]  A. Zellner,et al.  A Note on Aggregation, Disaggregation and Forecasting Performance , 2000 .

[15]  Kazuhiko Kakamu,et al.  Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach , 2010, Comput. Stat. Data Anal..

[16]  R. Ramanathan,et al.  Short-run forecasts of electricity loads and peaks , 1997 .

[17]  Luc Anselin,et al.  Spatial Externalities, Spatial Multipliers, And Spatial Econometrics , 2003 .

[18]  Anastasios Panagiotelis,et al.  Bayesian Density Forecasting of Intraday Electricity Prices using Multivariate Skew t Distributions , 2008 .

[19]  Bhavani Shankar,et al.  Bayesian Spatial Probit Estimation: A primer and an application to HYV rice adoption , 2002 .