2D Metal Chalcogenide Nanopatterns by Block Copolymer Lithography

Nanoscale structure engineering is in high demand for various applications of 2D transition metal dichalcogenides (TMDs). An edge‐exposed 2D polycrystalline MoS2 nanomesh thin film is demonstrated via block copolymer (BCP) nanopatterning. Molybdenum nanomesh structure is formed by direct metal deposition of hexagonal cylinder BCP nanotemplate and the following lift‐off process. Subsequent sulfurization of the molybdenum nanomesh creates MoS2 nanomesh thin films without any degradative etching step. The approach is applicable to not only other metal sulfides and oxides but also other nanoscale structures of TMD thin films including nanodot and nanowire array by means of various BCP nanotemplate shapes. As the edge site of MoS2 is highly active for NO2 sensing, the edge‐exposed MoS2 nanomesh demonstrates sevenfold enhancement of sensitivity for NO2 molecules compared to uniform thin film as well as superior reversibility even under 80% relative humidity environment. This structure engineering method could greatly strengthen the potential application of 2D TMD materials with the optimal customized nanoscale structures.

[1]  Chong-Yun Park,et al.  Strain-Gradient Effect in Gas Sensors Based on Three-Dimensional Hollow Molybdenum Disulfide Nanoflakes. , 2017, ACS applied materials & interfaces.

[2]  Hee‐Tae Jung,et al.  Highly Periodic Metal Dichalcogenide Nanostructures with Complex Shapes, High Resolution, and High Aspect Ratios , 2017 .

[3]  J. Kwon,et al.  Grains in Selectively Grown MoS2 Thin Films. , 2017, Small.

[4]  Dae Yong Park,et al.  Flash Light Millisecond Self‐Assembly of High χ Block Copolymers for Wafer‐Scale Sub‐10 nm Nanopatterning , 2017, Advanced materials.

[5]  Il-Doo Kim,et al.  2D WS2-edge functionalized multi-channel carbon nanofibers: effect of WS2 edge-abundant structure on room temperature NO2 sensing , 2017 .

[6]  M. J. Moody,et al.  Low-Temperature Atomic Layer Deposition of MoS2 Films. , 2017, Angewandte Chemie.

[7]  Jose L. Mendoza-Cortes,et al.  Low-temperature Synthesis of Heterostructures of Transition Metal Dichalcogenide Alloys (WxMo1-xS2) and Graphene with Superior Catalytic Performance for Hydrogen Evolution. , 2017, ACS nano.

[8]  Michael K.H. Leung,et al.  Engineering stepped edge surface structures of MoS2 sheet stacks to accelerate the hydrogen evolution reaction , 2017 .

[9]  Dong Sung Choi,et al.  Ultrafast Interfacial Self-Assembly of 2D Transition Metal Dichalcogenides Monolayer Films and Their Vertical and In-Plane Heterostructures. , 2017, ACS applied materials & interfaces.

[10]  J. Warner,et al.  Edge-Enriched 2D MoS2 Thin Films Grown by Chemical Vapor Deposition for Enhanced Catalytic Performance , 2017 .

[11]  Ziqiang Zhu,et al.  Experimental and First-Principles Investigation of MoWS2 with High Hydrogen Evolution Performance. , 2016, ACS applied materials & interfaces.

[12]  Jahyun Koo,et al.  Improvement of Gas-Sensing Performance of Large-Area Tungsten Disulfide Nanosheets by Surface Functionalization. , 2016, ACS nano.

[13]  Hee K. Park,et al.  Self-Aligned Multichannel Graphene Nanoribbon Transistor Arrays Fabricated at Wafer Scale. , 2016, Nano letters.

[14]  Atul S. Chaudhari,et al.  Fabrication of MoS2 Nanowire Arrays and Layered Structures via the Self‐Assembly of Block Copolymers , 2016 .

[15]  Song Jin,et al.  Synthesis of Molybdenum Disulfide Nanowire Arrays Using a Block Copolymer Template , 2016 .

[16]  Yang-Fan Xu,et al.  Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution , 2016 .

[17]  Bong Hoon Kim,et al.  3D Tailored Crumpling of Block‐Copolymer Lithography on Chemically Modified Graphene , 2016, Advanced materials.

[18]  M. Pumera,et al.  Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides. , 2015, Chemical reviews.

[19]  Hee‐Tae Jung,et al.  Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS2 Layers. , 2015, ACS nano.

[20]  G. Yeom,et al.  Controlled MoS2 layer etching using CF4 plasma , 2015, Nanotechnology.

[21]  M. Chan,et al.  Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production , 2015, Nature Communications.

[22]  Jong-Hyun Ahn,et al.  Drying‐Mediated Self‐Assembled Growth of Transition Metal Dichalcogenide Wires and their Heterostructures , 2015, Advanced materials.

[23]  Charles T. Black,et al.  Arbitrary lattice symmetries via block copolymer nanomeshes , 2015, Nature Communications.

[24]  Byoung Hun Lee,et al.  Charge-transfer-based Gas Sensing Using Atomic-layer MoS2 , 2015, Scientific Reports.

[25]  Jung Ho Yu,et al.  Vertical heterostructure of two-dimensional MoS₂ and WSe₂ with vertically aligned layers. , 2015, Nano letters.

[26]  Yeonwoong Jung,et al.  Metal seed layer thickness-induced transition from vertical to horizontal growth of MoS2 and WS2. , 2014, Nano letters.

[27]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[28]  Hao Wang,et al.  Ultrahigh Hydrogen Evolution Performance of Under‐Water “Superaerophobic” MoS2 Nanostructured Electrodes , 2014, Advanced materials.

[29]  G. Duesberg,et al.  High‐Performance Sensors Based on Molybdenum Disulfide Thin Films , 2013, Advanced materials.

[30]  Shengli Chang,et al.  Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field , 2013, Nanoscale Research Letters.

[31]  Wei Gao,et al.  Direct laser-patterned micro-supercapacitors from paintable MoS2 films. , 2013, Small.

[32]  Bumjoon J. Kim,et al.  Proximity injection of plasticizing molecules to self-assembling polymers for large-area, ultrafast nanopatterning in the sub-10-nm regime. , 2013, ACS nano.

[33]  Bin Liu,et al.  Sensing behavior of atomically thin-layered MoS2 transistors. , 2013, ACS nano.

[34]  Bong Hoon Kim,et al.  Flexible and Transferrable Self‐Assembled Nanopatterning on Chemically Modified Graphene , 2013, Advanced materials.

[35]  Desheng Kong,et al.  Synthesis of MoS2 and MoSe2 films with vertically aligned layers. , 2013, Nano letters.

[36]  T. Jaramillo,et al.  Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. , 2012, Nature materials.

[37]  Qiyuan He,et al.  Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. , 2012, Small.

[38]  Guanxiong Liu,et al.  Epitaxial graphene nanoribbon array fabrication using BCP-assisted nanolithography. , 2012, ACS nano.

[39]  Lain-Jong Li,et al.  Highly flexible MoS2 thin-film transistors with ion gel dielectrics. , 2012, Nano letters.

[40]  Hua Zhang,et al.  Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. , 2012, Small.

[41]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[42]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[43]  Dong Xiang,et al.  Metal Oxide Gas Sensors: Sensitivity and Influencing Factors , 2010, Sensors.

[44]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[45]  P. Lambin,et al.  Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. , 2008, Nature nanotechnology.

[46]  Jinan Chai,et al.  Assembly of aligned linear metallic patterns on silicon , 2007, Nature Nanotechnology.

[47]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[48]  C. Ross,et al.  Templated Self‐Assembly of Block Copolymers: Top‐Down Helps Bottom‐Up , 2006 .

[49]  C. Hawker,et al.  Block Copolymer Lithography: Merging “Bottom-Up” with “Top-Down” Processes , 2005 .

[50]  X. Zhao,et al.  Synthesis and structure of multi-layered WS2(CoS), MoS2(Mo) nanocapsules and single-layered WS2(W) nanoparticles , 2005 .

[51]  Christopher Harrison,et al.  Block copolymer lithography: Periodic arrays of ~1011 holes in 1 square centimeter , 1997 .

[52]  C. Hawker,et al.  Controlling Polymer-Surface Interactions with Random Copolymer Brushes , 1997, Science.

[53]  Bong Hoon Kim,et al.  Bimodal phase separated block copolymer/homopolymer blends self-assembly for hierarchical porous metal nanomesh electrodes. , 2017, Nanoscale.

[54]  G. Craig,et al.  Self-Assembly of Block Copolymers on Lithographically Defined Nanopatterned Substrates , 2007 .

[55]  C B Wilson,et al.  Sensors 2010. , 1999, BMJ.