A Design-Specific and Thermally-Aware Methodology for Trading-Off Power and Performance in Leakage-Dominant CMOS Technologies

As CMOS technology scales deeper into the nanometer regime, factors such as leakage power and chip temperature emerge as critically important concerns for high-performance VLSI design. Consequently, enhancing processing performance is no longer the most important factor that dominates future circuit design considerations. This paper, for the first time, proposes a systematic methodology to determine a generalized design optimization metric for simultaneously trading-off power and performance in nanometer scale integrated circuits to achieve design-specific targets. The methodology incorporates interconnect effects as well as electrothermal couplings between substrate temperature, power, and performance for nanometer scale design optimization. Implications of choosing a specific design optimization metric on power, performance, and operating temperature are illustrated and discussed. The proposed methodology is shown to provide a more meaningful optimization metric (for power-performance tradeoff analysis) and basis, with considerations of chip-level thermal management including maximum allowable operating temperature and packaging/cooling solutions. Furthermore, implications of CMOS technology scaling and parameter variations on the proposed methodology are discussed.

[1]  Anantha P. Chandrakasan,et al.  Sources of Power Consumption , 1995 .

[2]  H. B. Bakoglu,et al.  Circuits, interconnections, and packaging for VLSI , 1990 .

[3]  Anantha P. Chandrakasan,et al.  Minimizing power consumption in digital CMOS circuits , 1995, Proc. IEEE.

[4]  B. M. Gordon,et al.  Supply and threshold voltage scaling for low power CMOS , 1997, IEEE J. Solid State Circuits.

[5]  J. Liaw,et al.  Leakage scaling in deep submicron CMOS for SoC , 2002 .

[6]  Vivek De,et al.  Simultaneous power supply, threshold voltage, and transistor size optimization for low-power operation of CMOS circuits , 1998, IEEE Trans. Very Large Scale Integr. Syst..

[7]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[8]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[9]  Kaustav Banerjee,et al.  A power-optimal repeater insertion methodology for global interconnects in nanometer designs , 2002 .

[10]  Paul I. Pénzes,et al.  Energy-delay efficiency of VLSI computations , 2002, GLSVLSI '02.

[11]  Alain J. Martin Towards an energy complexity of computation , 2001, Inf. Process. Lett..

[12]  M. Horowitz,et al.  Low-power digital design , 1994, Proceedings of 1994 IEEE Symposium on Low Power Electronics.

[13]  K. Banerjee,et al.  Impact of off-state leakage current on electromigration design rules for nanometer scale CMOS technologies , 2004, 2004 IEEE International Reliability Physics Symposium. Proceedings.

[14]  Sheng-Chih Lin,et al.  A self-consistent junction temperature estimation methodology for nanometer scale ICs with implications for performance and thermal management , 2003, IEEE International Electron Devices Meeting 2003.

[15]  Kaustav Banerjee,et al.  Simultaneous optimization of supply and threshold voltages for low-power and high-performance circuits in the leakage dominant era , 2004, Proceedings. 41st Design Automation Conference, 2004..

[16]  裕幸 飯田,et al.  International Technology Roadmap for Semiconductors 2003の要求清浄度について - シリコンウエハ表面と雰囲気環境に要求される清浄度, 分析方法の現状について - , 2004 .

[17]  W. C. Elmore The Transient Response of Damped Linear Networks with Particular Regard to Wideband Amplifiers , 1948 .

[18]  Victor V. Zyuban,et al.  Balancing hardware intensity in microprocessor pipelines , 2003, IBM J. Res. Dev..

[19]  Resve A. Saleh,et al.  Power-delay metrics revisited for 90 nm CMOS technology , 2005, Sixth international symposium on quality electronic design (isqed'05).

[20]  R.W. Brodersen,et al.  Methods for true energy-performance optimization , 2004, IEEE Journal of Solid-State Circuits.

[21]  Anantha P. Chandrakasan,et al.  Low Power Digital CMOS Design , 1995 .

[22]  Peter M. Zeitzoff,et al.  MOSFET scaling trends and challenges through the end of the roadmap , 2004, Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571).

[23]  Kaushik Roy,et al.  Robust subthreshold logic for ultra-low power operation , 2001, IEEE Trans. Very Large Scale Integr. Syst..

[24]  Kaustav Banerjee,et al.  A thermally-aware methodology for design-specific optimization of supply and threshold voltages in nanometer scale ICs , 2005, 2005 International Conference on Computer Design.

[25]  Victor V. Zyuban,et al.  Unified methodology for resolving power-performance tradeoffs at the microarchitectural and circuit levels , 2002, ISLPED '02.

[26]  Jan M. Rabaey,et al.  Digital Integrated Circuits: A Design Perspective , 1995 .

[27]  B. Agarwala,et al.  Scaling effect on electromigration in on-chip Cu wiring , 1999, Proceedings of the IEEE 1999 International Interconnect Technology Conference (Cat. No.99EX247).

[28]  A. R. Newton,et al.  Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas , 1990 .

[29]  Kiat Seng Yeo,et al.  Low Voltage, Low Power VLSI Subsystems , 2004 .

[30]  P.P. Gelsinger,et al.  Microprocessors for the new millennium: Challenges, opportunities, and new frontiers , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[31]  James Tschanz,et al.  Parameter variations and impact on circuits and microarchitecture , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[32]  P. P. Gelsinger Gigascale integration for teraops performance-challenges, opportunities, and new frontiers , 2004, DAC 2004.

[33]  Ih-Chin Chen,et al.  An investigation of the impact of technology scaling on power wasted as short-circuit current in low voltage static CMOS circuits , 1996, Proceedings of 1996 International Symposium on Low Power Electronics and Design.

[34]  H. Peter Hofstee Power-constrained microprocessor design , 2002, Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors.

[35]  K. Olasupo,et al.  Time dependent breakdown of ultrathin gate oxide , 2000 .

[36]  Vivek De,et al.  Technology and design challenges for low power and high performance [microprocessors] , 1999, Proceedings. 1999 International Symposium on Low Power Electronics and Design (Cat. No.99TH8477).

[37]  Anantha Chandrakasan,et al.  Optimal supply and threshold scaling for subthreshold CMOS circuits , 2002, Proceedings IEEE Computer Society Annual Symposium on VLSI. New Paradigms for VLSI Systems Design. ISVLSI 2002.