Predicting minimum alveolar concentration (MAC) of anesthetic agents by statistical modeling methods and theoretical descriptors derived from electrostatic potentials on molecular surface

[1]  P. Wolfe Convergence Conditions for Ascent Methods. II , 1969 .

[2]  B. Kowalski,et al.  Partial least-squares regression: a tutorial , 1986 .

[3]  J. Murray,et al.  Correlations between the solvent hydrogen-bond-donating parameter .alpha. and the calculated molecular surface electrostatic potential , 1991 .

[4]  S. Ranganathan,et al.  Correlations between the solvent hydrogen bond acceptor parameter β and the calculated molecular electrostatic potential , 1991 .

[5]  J. Murray,et al.  Statistically-based interaction indices derived from molecular surface electrostatic potentials: a general interaction properties function (GIPF) , 1994 .

[6]  Carl E. Rasmussen,et al.  In Advances in Neural Information Processing Systems , 2011 .

[7]  Geoffrey E. Hinton,et al.  Evaluation of Gaussian processes and other methods for non-linear regression , 1997 .

[8]  J. Murray,et al.  Prediction of Aqueous Solvation Free Energies from Properties of Solute Molecular Surface Electrostatic Potentials , 1999 .

[9]  M. Karelson Molecular descriptors in QSAR/QSPR , 2000 .

[10]  Elizabeth A. Peck,et al.  Introduction to Linear Regression Analysis , 2001 .

[11]  Yi-Zeng Liang,et al.  Monte Carlo cross validation , 2001 .

[12]  B. Rice,et al.  A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules , 2002 .

[13]  Alessandro Pedretti,et al.  VEGA: a versatile program to convert, handle and visualize molecular structure on Windows-based PCs. , 2002, Journal of molecular graphics & modelling.

[14]  A Quantitative Structure−Property Relationship Analysis of logP for Disubstituted Benzenes , 2002 .

[15]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[16]  K. Miller,et al.  Mechanisms of actions of inhaled anesthetics. , 2003, The New England journal of medicine.

[17]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[18]  Yi-Zeng Liang,et al.  Monte Carlo cross‐validation for selecting a model and estimating the prediction error in multivariate calibration , 2004 .

[19]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[20]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[21]  H. Meyer Zur Theorie der Alkoholnarkose , 1899, Archiv für experimentelle Pathologie und Pharmakologie.

[22]  J. Sear,et al.  Determinants of Volatile General Anesthetic Potency: A Preliminary Three-Dimensional Pharmacophore for Halogenated Anesthetics , 2006, Anesthesia and analgesia.

[23]  Gábor Csányi,et al.  Gaussian Processes: A Method for Automatic QSAR Modeling of ADME Properties , 2007, J. Chem. Inf. Model..

[24]  A. Mehdipour,et al.  QSAR Studies on the Anesthetic Action of Some Polyhalogenated Ethers , 2007, Chemical biology & drug design.

[25]  J. Zou,et al.  QSPR/QSAR models for prediction of the physicochemical properties and biological activity of polybrominated diphenyl ethers. , 2007, Chemosphere.

[26]  M. Abraham,et al.  Effect of anesthetic structure on inhalation anesthesia: implications for the mechanism. , 2008, Journal of pharmaceutical sciences.

[27]  H. Xu,et al.  [QSPR studies on the physicochemical properties of polybrominated diphenyl ethers using theoretical descriptors derived from electrostatic potentials on molecular Surface]. , 2008, Huan jing ke xue= Huanjing kexue.

[28]  Peng Zhou,et al.  Gaussian process: an alternative approach for QSAM modeling of peptides , 2008, Amino Acids.

[29]  F. Tian,et al.  Modeling and prediction of binding affinities between the human amphiphysin SH3 domain and its peptide ligands using genetic algorithm‐Gaussian processes , 2008, Biopolymers.

[30]  John Manchester,et al.  SAMFA: Simplifying Molecular Description for 3D-QSAR , 2008, J. Chem. Inf. Model..

[31]  Yong-Jun Jiang,et al.  Quantitative structure-chromatographic retention relationship for polycyclic aromatic sulfur heterocycles. , 2008, Journal of chromatography. A.

[32]  A. Mehdipour,et al.  Density Functional Theory-based Quantitative Structure Activity Relationship (QSAR) Study of Alkanol and Alkanthiol Derivatives , 2009 .

[33]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[34]  F. Tian,et al.  Comprehensive comparison of eight statistical modelling methods used in quantitative structure-retention relationship studies for liquid chromatographic retention times of peptides generated by protease digestion of the Escherichia coli proteome. , 2009, Journal of chromatography. A.