Cusp and loop soliton solutions of short-wave models for the Camassa–Holm and Degasperis–Procesi equations

Abstract A simple method is developed for constructing the solutions of the short-wave model equations associated with the Camassa–Holm (CH) and Degasperis–Procesi (DP) shallow-water wave equations. Taking an appropriate scaling limit of the N -soliton solution of the CH equation, we obtain the N -cusp soliton solution for the CH short-wave model. The similar procedure also leads to the N -loop soliton solution for the DP short-wave model. We describe the property of the solutions. In particular, we derive the large-time asymptotics of the solutions as well as the formulas for the phase shift.

[1]  M. Manna,et al.  ASYMPTOTIC DYNAMICS OF SHORT WAVES IN NONLINEAR DISPERSIVE MODELS , 1997, solv-int/9710013.

[2]  Darryl D. Holm,et al.  The geometry of peaked solitons and billiard solutions of a class of integrable PDE's , 1994 .

[3]  V A Vakhnenko,et al.  Solitons in a nonlinear model medium , 1992 .

[4]  Darryl D. Holm,et al.  On asymptotically equivalent shallow water wave equations , 2003, nlin/0307011.

[5]  R. Johnson,et al.  Camassa–Holm, Korteweg–de Vries and related models for water waves , 2002, Journal of Fluid Mechanics.

[6]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[7]  A. I. Zenchuk,et al.  Soliton-cuspon interaction for the Camassa-Holm equation , 1999 .

[8]  Hans Lundmark,et al.  Multi-peakon solutions of the Degasperis–Procesi equation , 2003, nlin/0503033.

[9]  E J Parkes,et al.  The two loop soliton solution of the Vakhnenko equation , 1998 .

[10]  M. Manna Nonlinear asymptotic short-wave models in fluid dynamics , 2001 .

[11]  Darryl D. Holm,et al.  A New Integrable Shallow Water Equation , 1994 .

[12]  Z. Qiao Communications in Mathematical Physics The Camassa-Holm Hierarchy , N-Dimensional Integrable Systems , and Algebro-Geometric Solution on a Symplectic Submanifold , 2003 .

[13]  R. Johnson,et al.  The Classical Problem of Water Waves: a Reservoir of Integrable and Nearly-Integrable Equations , 2003 .

[14]  Yuri N. Fedorov,et al.  Wave solutions of evolution equations and Hamiltonian flows on nonlinear subvarieties of generalized Jacobians , 2000 .

[15]  Yoshimasa Matsuno,et al.  Multisoliton solutions of the Degasperis–Procesi equation and their peakon limit , 2005 .

[16]  Athanassios S. Fokas,et al.  Symplectic structures, their B?acklund transformation and hereditary symmetries , 1981 .

[17]  Jerrold E. Marsden,et al.  The Complex Geometry of Weak Piecewise Smooth Solutions of Integrable Nonlinear PDE's¶of Shallow Water and Dym Type , 2001, nlin/0105025.

[18]  Yuri N. Fedorov,et al.  Algebraic geometrical solutions for certain evolution equations and Hamiltonian flows on nonlinear subvarieties of generalized Jacobians , 2001 .

[19]  Z. Qiao Integrable Hierarchy, 3×3 Constrained Systems, and Parametric Solutions , 2004 .

[20]  Giuseppe Gaeta,et al.  Symmetry and perturbation theory , 2005 .

[21]  Yi-shen Li Some Water Wave Equations and Integrability , 2005 .

[22]  J. K. Hunter,et al.  Dynamics of director fields , 1991 .

[23]  Darryl D. Holm,et al.  A New Integrable Equation with Peakon Solutions , 2002, nlin/0205023.

[24]  R. Johnson,et al.  On solutions of the Camassa-Holm equation , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  E. J. Parkes,et al.  The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method , 2002 .

[26]  Allen Parker,et al.  On the Camassa–Holm equation and a direct method of solution. III. N-soliton solutions , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  R. Hirota,et al.  N-Soliton Solutions of Model Equations for Shallow Water Waves , 1976 .

[28]  Z. Qiao,et al.  Cusp solitons and cusp-like singular solutions for nonlinear equations , 2005 .

[29]  Toru Shimizu,et al.  Cusp Soliton of a New Integrable Nonlinear Evolution Equation , 1980 .

[30]  Yoshimasa Matsuno,et al.  The N-soliton solution of the Degasperis–Procesi equation , 2005, nlin/0511029.

[31]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[32]  Richard Beals,et al.  Multipeakons and the Classical Moment Problem , 1999, solv-int/9906001.

[33]  Yoshimasa Matsuno,et al.  Parametric Representation for the Multisoliton Solution of the Camassa–Holm Equation , 2005, nlin/0504055.