Curvature line parametrized surfaces and orthogonal coordinate systems: discretization with Dupin cyclides

Cyclidic nets are introduced as discrete analogs of curvature line parametrized surfaces and orthogonal coordinate systems. A 2-dimensional cyclidic net is a piecewise smooth C1-surface built from surface patches of Dupin cyclides, each patch being bounded by curvature lines of the supporting cyclide. An explicit description of cyclidic nets is given and their relation to the established discretizations of curvature line parametrized surfaces as circular, conical and principal contact element nets is explained. We introduce 3-dimensional cyclidic nets as discrete analogs of triply-orthogonal coordinate systems and investigate them in detail. Our considerations are based on the Lie geometric description of Dupin cyclides. Explicit formulas are derived and implemented in a computer program.

[1]  Ulrich Bauer,et al.  Uniform Convergence of Discrete Curvatures from Nets of Curvature Lines , 2009, Discret. Comput. Geom..

[2]  U. Hertrich-Jeromin Introduction to Möbius differential geometry , 2003 .

[3]  A. Bobenko,et al.  Orthogonal nets and Clifford algebras , 1998, math/9802126.

[4]  A. Bobenko Symmetries and Integrability of Difference Equations: Discrete conformal maps and surfaces , 1999 .

[5]  S. Manakov,et al.  ―∂-Reductions of the Multidimensional Quadrilateral Lattice. The Multidimensional Circular Lattice , 1998 .

[6]  Johannes Wallner,et al.  The focal geometry of circular and conical meshes , 2008, Adv. Comput. Math..

[7]  Ang Yan Sheng,et al.  Discrete Differential Geometry , 2017 .

[8]  Manuel Mañas,et al.  Transformations of quadrilateral lattices , 1997, solv-int/9712017.

[9]  R. R. Martin,et al.  Differential geometry applied to curve and surface design , 1988 .

[10]  Thomas E. Cecil Lie sphere geometry , 1992 .

[11]  V. Zakharov Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type, I: Integration of the Lamé equations , 1998 .

[12]  Yuri B. Suris,et al.  On organizing principles of discrete differential geometry. Geometry of spheres , 2006 .

[13]  Felix Klein,et al.  Vorlesungen über höhere Geometrie , 1926 .

[14]  P. Santini,et al.  Multidimensional quadrilateral lattices are integrable , 1996, solv-int/9612007.

[15]  B. Konopelchenko,et al.  Three–dimensional integrable lattices in Euclidean spaces: conjugacy and orthogonality , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  J. A. Gregory The Mathematics of Surfaces. , 1987 .

[17]  Michael Stoll,et al.  Lineare Algebra , 2021, Mathematik für Ingenieure 1.

[18]  Johannes Wallner,et al.  Geometric modeling with conical meshes and developable surfaces , 2006, SIGGRAPH 2006.

[19]  P. Santini,et al.  The integrable discrete analogues of orthogonal coordinate systems are multi-dimensional circular lattices , 1997 .

[20]  A. Bobenko,et al.  Discrete differential geometry. Consistency as integrability , 2005, math/0504358.

[21]  Vinod Kumar,et al.  Surface design using cyclide patches , 1996, Comput. Aided Des..

[22]  A. Bobenko,et al.  Discrete Differential Geometry: Integrable Structure , 2008 .

[23]  Miroslav Laviÿcka,et al.  On the Representation of Dupin Cyclides in Lie Sphere Geometry with Applications , 2009 .

[24]  Ralph R. Martin,et al.  Cyclides in surface and solid modeling , 1993, IEEE Computer Graphics and Applications.

[25]  Wilhelm Blaschke,et al.  Vorlesungen über Differentialgeometrie und Geometrische Grundlagen von Einsteins Relativitätstheorie: III: Differentialgeometrie der Kreise und Kugeln , 2022 .

[26]  R. R. Martin Principal Patches - A New Class of Surface Patch Based on Differential Geometry , 1983, Eurographics.

[27]  David McLean,et al.  A Method of Generating Surfaces as a Composite of Cyclide Patches , 1985, Comput. J..

[28]  Peter J. Olver,et al.  Symmetries and Integrability of Difference Equations , 1999 .

[29]  Josef Hoschek,et al.  Handbook of Computer Aided Geometric Design , 2002 .

[30]  D. Matthes,et al.  Discrete and smooth orthogonal systems: C∞-approximation , 2003 .

[31]  K. Roberts,et al.  Thesis , 2002 .