Curvature line parametrized surfaces and orthogonal coordinate systems: discretization with Dupin cyclides
暂无分享,去创建一个
[1] Ulrich Bauer,et al. Uniform Convergence of Discrete Curvatures from Nets of Curvature Lines , 2009, Discret. Comput. Geom..
[2] U. Hertrich-Jeromin. Introduction to Möbius differential geometry , 2003 .
[3] A. Bobenko,et al. Orthogonal nets and Clifford algebras , 1998, math/9802126.
[4] A. Bobenko. Symmetries and Integrability of Difference Equations: Discrete conformal maps and surfaces , 1999 .
[5] S. Manakov,et al. ―∂-Reductions of the Multidimensional Quadrilateral Lattice. The Multidimensional Circular Lattice , 1998 .
[6] Johannes Wallner,et al. The focal geometry of circular and conical meshes , 2008, Adv. Comput. Math..
[7] Ang Yan Sheng,et al. Discrete Differential Geometry , 2017 .
[8] Manuel Mañas,et al. Transformations of quadrilateral lattices , 1997, solv-int/9712017.
[9] R. R. Martin,et al. Differential geometry applied to curve and surface design , 1988 .
[10] Thomas E. Cecil. Lie sphere geometry , 1992 .
[11] V. Zakharov. Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type, I: Integration of the Lamé equations , 1998 .
[12] Yuri B. Suris,et al. On organizing principles of discrete differential geometry. Geometry of spheres , 2006 .
[13] Felix Klein,et al. Vorlesungen über höhere Geometrie , 1926 .
[14] P. Santini,et al. Multidimensional quadrilateral lattices are integrable , 1996, solv-int/9612007.
[15] B. Konopelchenko,et al. Three–dimensional integrable lattices in Euclidean spaces: conjugacy and orthogonality , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[16] J. A. Gregory. The Mathematics of Surfaces. , 1987 .
[17] Michael Stoll,et al. Lineare Algebra , 2021, Mathematik für Ingenieure 1.
[18] Johannes Wallner,et al. Geometric modeling with conical meshes and developable surfaces , 2006, SIGGRAPH 2006.
[19] P. Santini,et al. The integrable discrete analogues of orthogonal coordinate systems are multi-dimensional circular lattices , 1997 .
[20] A. Bobenko,et al. Discrete differential geometry. Consistency as integrability , 2005, math/0504358.
[21] Vinod Kumar,et al. Surface design using cyclide patches , 1996, Comput. Aided Des..
[22] A. Bobenko,et al. Discrete Differential Geometry: Integrable Structure , 2008 .
[23] Miroslav Laviÿcka,et al. On the Representation of Dupin Cyclides in Lie Sphere Geometry with Applications , 2009 .
[24] Ralph R. Martin,et al. Cyclides in surface and solid modeling , 1993, IEEE Computer Graphics and Applications.
[25] Wilhelm Blaschke,et al. Vorlesungen über Differentialgeometrie und Geometrische Grundlagen von Einsteins Relativitätstheorie: III: Differentialgeometrie der Kreise und Kugeln , 2022 .
[26] R. R. Martin. Principal Patches - A New Class of Surface Patch Based on Differential Geometry , 1983, Eurographics.
[27] David McLean,et al. A Method of Generating Surfaces as a Composite of Cyclide Patches , 1985, Comput. J..
[28] Peter J. Olver,et al. Symmetries and Integrability of Difference Equations , 1999 .
[29] Josef Hoschek,et al. Handbook of Computer Aided Geometric Design , 2002 .
[30] D. Matthes,et al. Discrete and smooth orthogonal systems: C∞-approximation , 2003 .
[31] K. Roberts,et al. Thesis , 2002 .