Grammar-based random walkers in semantic networks

Semantic networks qualify the meaning of an edge relating any two vertices. Determining which vertices are most ''central'' in a semantic network is difficult because one relationship type may be deemed subjectively more important than another. For this reason, research into semantic network metrics has focused primarily on context-based rankings (i.e. user prescribed contexts). Moreover, many of the current semantic network metrics rank semantic associations (i.e. directed paths between two vertices) and not the vertices themselves. This article presents a framework for calculating semantically meaningful primary eigenvector-based metrics such as eigenvector centrality and PageRank in semantic networks using a modified version of the random walker model of Markov chain analysis. Random walkers, in the context of this article, are constrained by a grammar, where the grammar is a user-defined data structure that determines the meaning of the final vertex ranking. The ideas in this article are presented within the context of the Resource Description Framework (RDF) of the Semantic Web initiative.

[1]  J. F. Meyer,et al.  Probabilistic modeling , 1995 .

[2]  Marko A. Rodriguez,et al.  Grammar-based geodesics in semantic networks , 2010, Knowl. Based Syst..

[3]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[4]  Dan Brickley,et al.  Rdf vocabulary description language 1.0 : Rdf schema , 2004 .

[5]  Lee W. Lacy OWL: Representing Information Using the Web Ontology Language , 2006 .

[6]  Roy Rada,et al.  Development and application of a metric on semantic nets , 1989, IEEE Trans. Syst. Man Cybern..

[7]  Jeremy J. Carroll,et al.  Resource description framework (rdf) concepts and abstract syntax , 2003 .

[8]  Isi Mitrani,et al.  Probabilistic Modelling , 1998 .

[9]  Amit P. Sheth,et al.  Ranking complex relationships on the semantic Web , 2005, IEEE Internet Computing.

[10]  Johan Bollen,et al.  Mapping the structure of science through usage , 2006, Scientometrics.

[11]  Deborah L. McGuinness,et al.  OWL Web ontology language overview , 2004 .

[12]  Vladan Devedzic,et al.  Petri net ontology , 2006, Knowl. Based Syst..

[13]  Johan Bollen,et al.  Journal status , 2006, Scientometrics.

[14]  Arvind Malhotra,et al.  XML Schema Part 2: Datatypes Second Edition , 2004 .

[15]  Johan Bollen,et al.  Co-authorship networks in the digital library research community , 2005, Inf. Process. Manag..

[16]  Marko A. Rodriguez,et al.  General-Purpose Computing on a Semantic Network Substrate , 2007, ArXiv.

[17]  Amit P. Sheth,et al.  Semantic Association Identification and Knowledge Discovery for National Security Applications , 2005, J. Database Manag..

[18]  Sixteenth Conference on Innovative Applications of Artificial Intelligence , .

[19]  Paul R. Cohen,et al.  Information retrieval by constrained spreading activation in semantic networks , 1987, Inf. Process. Manag..

[20]  Roy T. Fielding,et al.  Uniform Resource Identifiers (URI): Generic Syntax , 1998, RFC.

[21]  Lise Getoor,et al.  Link mining: a survey , 2005, SKDD.

[22]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[23]  A. Rosenfeld,et al.  IEEE TRANSACTIONS ON SYSTEMS , MAN , AND CYBERNETICS , 2022 .

[24]  John C. Mitchell,et al.  Concepts in programming languages , 2002 .

[25]  Johan Bollen,et al.  Modeling Computations in a Semantic Network , 2007, ArXiv.

[26]  Amy Nicole Langville,et al.  Google's PageRank and beyond - the science of search engine rankings , 2006 .

[27]  魏屹东,et al.  Scientometrics , 2018, Encyclopedia of Big Data.

[28]  Vladan Devedzic,et al.  Model driven architecture and ontology development , 2006 .

[29]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[30]  Proceedings of the Twelfth International World Wide Web Conference, WWW 2003, Budapest, Hungary, May 20-24, 2003 , 2003, WWW.

[31]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[32]  Fabio Crestani,et al.  Application of Spreading Activation Techniques in Information Retrieval , 1997, Artificial Intelligence Review.

[33]  Jacques Savoy,et al.  Bayesian Inference Networks and Spreading Activation in Hypertext Systems , 1992, Inf. Process. Manag..

[34]  Tak Kuen Siu,et al.  Markov Chains: Models, Algorithms and Applications , 2006 .

[35]  Roy T. Fielding,et al.  Uniform Resource Identifier (URI): Generic Syntax , 2005, RFC.

[36]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[37]  Donna Harman,et al.  Information Processing and Management , 2022 .

[38]  BMC Bioinformatics , 2005 .

[39]  Fabio Crestani,et al.  Searching the web by constrained spreading activation , 2000, Inf. Process. Manag..

[40]  Carl Vogel,et al.  Proceedings of the 16th International Conference on Computational Linguistics , 1996, COLING 1996.

[41]  James Hendler,et al.  Google’s PageRank and Beyond: The Science of Search Engine Rankings , 2007 .

[42]  Ulrik Brandes,et al.  Network Analysis: Methodological Foundations , 2010 .

[43]  Rada Mihalcea,et al.  PageRank on Semantic Networks, with Application to Word Sense Disambiguation , 2004, COLING.

[44]  Lauren Wood 技術解説 IEEE Internet Computing , 1999 .

[45]  Ulrik Brandes,et al.  Network Analysis: Methodological Foundations (Lecture Notes in Computer Science) , 2005 .

[46]  P. Bonacich Power and Centrality: A Family of Measures , 1987, American Journal of Sociology.

[47]  Robert W. Sebesta Concepts Programmng Languages (7th Edition) , 2005 .

[48]  Olle Häggström Finite Markov Chains and Algorithmic Applications , 2002 .