Observability and Controllability of Nonlinear Networks: The Role of Symmetry

Observability and controllability are essential concepts to the design of predictive observer models and feedback controllers of networked systems. For example, noncontrollable mathematical models of real systems have subspaces that influence model behavior, but cannot be controlled by an input. Such subspaces can be difficult to determine in complex nonlinear networks. Since almost all of the present theory was developed for linear networks without symmetries, here we present a numerical and group representational framework, to quantify the observability and controllability of nonlinear networks with explicit symmetries that shows the connection between symmetries and nonlinear measures of observability and controllability. We numerically observe and theoretically predict that not all symmetries have the same effect on network observation and control. Our analysis shows that the presence of symmetry in a network may decrease observability and controllability, although networks containing only rotational symmetries remain controllable and observable. These results alter our view of the nature of observability and controllability in complex networks, change our understanding of structural controllability, and affect the design of mathematical models to observe and control such networks.

[1]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[2]  Luis A. Aguirre,et al.  Controllability and observability of linear systems: some noninvariant aspects , 1995 .

[3]  Romain Joly,et al.  Observation and inverse problems in coupled cell networks , 2011, 1103.1720.

[4]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[5]  Martin Casdagli,et al.  An analytic approach to practical state space reconstruction , 1992 .

[6]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[7]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[8]  M. Tinkham Group Theory and Quantum Mechanics , 1964 .

[9]  V. Kadirkamanathan,et al.  International Journal of Systems Science , 2014 .

[10]  S. P. Cornelius,et al.  Realistic control of network dynamics , 2013, Nature Communications.

[11]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[12]  Albert-László Barabási,et al.  Observability of complex systems , 2013, Proceedings of the National Academy of Sciences.

[13]  Ching-tai Lin Structural controllability , 1974 .

[14]  John Stillwell,et al.  Symmetry , 2000, Am. Math. Mon..

[15]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[16]  Hendrik B. Geyer,et al.  Journal of Physics A - Mathematical and General, Special Issue. SI Aug 11 2006 ?? Preface , 2006 .

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  Thomas Kailath,et al.  Linear Systems , 1980 .

[19]  Dirk Helbing,et al.  Dynamics of Crowd Disasters; ; Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics; , 2007 .

[20]  Max L. Warshauer,et al.  Lecture Notes in Mathematics , 2001 .

[21]  J. Slotine,et al.  Symmetries, stability, and control in nonlinear systems and networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  David López IEEE Transactions on Education , 2012 .

[23]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[24]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[25]  E. Wigner,et al.  Book Reviews: Group Theory. And Its Application to the Quantum Mechanics of Atomic Spectra , 1959 .

[26]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[27]  D. Luenberger An introduction to observers , 1971 .

[28]  Herman Rubin,et al.  Controllability and observability in linear time-variable networks with arbitrary symmetry groups , 1972 .

[29]  Y. Wong,et al.  Differentiable Manifolds , 2009 .

[30]  W. Scott,et al.  Group Theory. , 1964 .

[31]  October I Physical Review Letters , 2022 .

[32]  Physics Letters , 1962, Nature.

[33]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[34]  H. E. Kuhn,et al.  BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, , 2007 .

[35]  Luis A. Aguirre,et al.  Investigating nonlinear dynamics from time series: The influence of symmetries and the choice of observables. , 2002, Chaos.

[36]  S. Lowen The Biophysical Journal , 1960, Nature.

[37]  A. Tustin Automatic Control , 1951, Nature.

[38]  W. Burnside,et al.  Theory of Groups of Finite Order , 1909 .

[39]  Celso Grebogi,et al.  International Journal of Bifurcation and Chaos: Editorial , 2008 .

[40]  B. Segee,et al.  Methods in Neuronal Modeling: from Ions to Networks, 2nd Edition , 1999, Computing in Science & Engineering.

[41]  D. M. Kerns Analysis of symmetrical waveguide junctions , 1951 .

[42]  R. Burke,et al.  Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  W. Brogan Modern Control Theory , 1971 .

[44]  日野 寛三,et al.  対数正規分布(Lognormal Distribution)のあてはめについて , 1994 .

[45]  M. Sansalone,et al.  Journal of Research of the National Bureau of Standards , 1959, Nature.

[46]  J. Bay Fundamentals of Linear State Space Systems , 1998 .

[47]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[48]  H. Hermes,et al.  Nonlinear Controllability via Lie Theory , 1970 .

[49]  Philippe Martin,et al.  Symmetry-Preserving Observers , 2006, IEEE Transactions on Automatic Control.

[50]  S Sato,et al.  The global bifurcation structure of the BVP neuronal model driven by periodic pulse trains. , 1995, Mathematical biosciences.

[51]  R. Kálmán Mathematical description of linear dynamical systems , 1963 .

[52]  Christophe Letellier,et al.  Relation between observability and differential embeddings for nonlinear dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  HE Ixtroductiont,et al.  The Bell System Technical Journal , 2022 .

[54]  Albert-László Barabási,et al.  Controllability of complex networks , 2011, Nature.

[55]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[56]  Steven J Schiff,et al.  Data assimilation for heterogeneous networks: the consensus set. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Louis M Pecora,et al.  Synchronization of chaotic systems. , 2015, Chaos.

[58]  F. Takens Detecting strange attractors in turbulence , 1981 .

[59]  Fernando Paganini,et al.  IEEE Transactions on Automatic Control , 2006 .

[60]  Luis A. Aguirre,et al.  On the non-equivalence of observables in phase-space reconstructions from recorded time series , 1998 .

[61]  J. Rogers Chaos , 1876 .

[62]  W. Browder,et al.  Annals of Mathematics , 1889 .

[63]  M. Golubitsky,et al.  Nonlinear dynamics of networks: the groupoid formalism , 2006 .

[64]  E. Ott,et al.  Blowout bifurcations: the occurrence of riddled basins and on-off intermittency , 1994 .

[65]  J. Aitchison,et al.  The Lognormal Distribution. , 1958 .

[66]  R. Perret,et al.  Structural observability of interconnected systems , 1990 .

[67]  Physical Review , 1965, Nature.

[68]  O. Rössler An equation for continuous chaos , 1976 .

[69]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[70]  Bernard Friedland,et al.  Controllability Index Based on Conditioning Number , 1975 .

[71]  G. M.,et al.  Theory of Groups of Finite Order , 1911, Nature.

[72]  Martin Golubitsky,et al.  Network periodic solutions: patterns of phase-shift synchrony , 2012 .

[73]  Matthias Durr,et al.  Methods In Neuronal Modeling From Ions To Networks , 2016 .

[74]  Francesco Sorrentino,et al.  Cluster synchronization and isolated desynchronization in complex networks with symmetries , 2013, Nature Communications.

[75]  Journal of Dynamic Systems, Measurement, and Control Guest Editorial Special Issue on Novel Robotics and Control , .

[76]  Noah J. Cowan,et al.  Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks , 2011, PloS one.

[77]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[78]  Jürgen Kurths,et al.  Nonlinear Dynamical System Identification from Uncertain and Indirect Measurements , 2004, Int. J. Bifurc. Chaos.