Systematic Optimization of a Force Field for Classical Simulations of TiO2-Water Interfaces

Atomistic force field parameters were developed for the TiO2–water interface by systematic optimization with respect to experimentally determined crystal structures (lattice parameters) and surface thermodynamics (water adsorption enthalpy). Optimized force field parameters were determined for the two cases where TiO2 was modeled with or without covalent bonding. The nonbonded TiO2 model can be used to simulate different TiO2 phases, while the bonded TiO2 model is particularly useful for simulations of nanosized TiO2 and biomatter, including protein–surface and nanoparticle–biomembrane simulations. The procedure is easily generalized to parametrize interactions between other inorganic surfaces and biomolecules.

[1]  Iseult Lynch,et al.  Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. , 2011, Journal of the American Chemical Society.

[2]  F. Jones,et al.  Teeth and bones: applications of surface science to dental materials and related biomaterials , 2001 .

[3]  Nitin Kumar,et al.  Development of a ReaxFF reactive force field for titanium dioxide/water systems. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[4]  Sara Linse,et al.  Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles , 2007, Proceedings of the National Academy of Sciences.

[5]  M. Mahmoudi,et al.  Protein-nanoparticle interactions: opportunities and challenges. , 2011, Chemical reviews.

[6]  Paul J van Maaren,et al.  Thermodynamics of hydrogen bonding in hydrophilic and hydrophobic media. , 2006, The journal of physical chemistry. B.

[7]  S. Köppen,et al.  Simulation of the interface of (100) rutile with aqueous ionic solution , 2006 .

[8]  K. Fichthorn,et al.  A Force Field for the Interaction of Water with TiO2 Surfaces , 2011 .

[9]  Bengt-Harald Jonsson,et al.  Protein adsorption onto silica nanoparticles: conformational changes depend on the particles' curvature and the protein stability. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[10]  U. Suter,et al.  Atomic Charges for Classical Simulations of Polar Systems , 2004 .

[11]  Richard A. Vaia,et al.  Accurate Simulation of Surfaces and Interfaces of Face-Centered Cubic Metals Using 12−6 and 9−6 Lennard-Jones Potentials , 2008 .

[12]  M. Manghnani,et al.  Isothermal compression of TiO2 (Rutile) under hydrostatic pressure to 106 kbar , 1979 .

[13]  J. Duffy Ionic-covalent character of metal and nonmetal oxides. , 2006, The journal of physical chemistry. A.

[14]  I. Fenoglio,et al.  Hydrophilic/hydrophobic features of TiO2 nanoparticles as a function of crystal phase, surface area and coating, in relation to their potential toxicity in peripheral nervous system. , 2012, Journal of colloid and interface science.

[15]  Håkan Mattsson,et al.  Surface spectroscopic characterization of titanium implant materials , 1990 .

[16]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[17]  Michiel Sprik,et al.  Acidity of the Aqueous Rutile TiO2(110) Surface from Density Functional Theory Based Molecular Dynamics. , 2010, Journal of chemical theory and computation.

[18]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[19]  Lucio Colombi Ciacchi,et al.  A Classical Potential to Model the Adsorption of Biological Molecules on Oxidized Titanium Surfaces. , 2011, Journal of chemical theory and computation.

[20]  T. Morimoto,et al.  Heat of Immersion of Titanium Dioxide in Water. I. The Effect of the Hydration Treatment of Titanium Dioxide , 1969 .

[21]  Shaojun Dong,et al.  pH-dependent protein conformational changes in albumin:gold nanoparticle bioconjugates: a spectroscopic study. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[22]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[23]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[24]  Erik G. Brandt,et al.  Molecular Dynamics Simulations of Adsorption of Amino Acid Side Chain Analogues and a Titanium Binding Peptide on the TiO2 (100) Surface , 2015 .

[25]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[26]  Marco P Monopoli,et al.  Biomolecular coronas provide the biological identity of nanosized materials. , 2012, Nature nanotechnology.

[27]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[28]  Andrei V. Bandura,et al.  Derivation of Force Field Parameters for TiO2−H2O Systems from ab Initio Calculations , 2003 .

[29]  Pengyu Y. Ren,et al.  Systematic improvement of a classical molecular model of water. , 2013, The journal of physical chemistry. B.

[30]  R. K. Mishra,et al.  Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[31]  S. Batsanov,et al.  Van der Waals Radii of Elements , 2001 .

[32]  Maurizio Casarin,et al.  Molecular Chemisorption on TiO2(110): A Local Point of View , 1998 .

[33]  A. J. McQuillan,et al.  An In Situ Infrared Spectroscopic Study of the Adsorption of Lysine to TiO2 from an Aqueous Solution , 1998 .

[34]  J. Smyth,et al.  H in rutile-type compounds: I. Single-crystal neutron and X-ray diffraction study of H in rutile , 1995 .

[35]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[36]  Irshad Hussain,et al.  Rational and combinatorial design of peptide capping ligands for gold nanoparticles. , 2004, Journal of the American Chemical Society.

[37]  Masanori Matsui,et al.  Molecular Dynamics Simulation of the Structural and Physical Properties of the Four Polymorphs of TiO2 , 1991 .

[38]  Omer Markovitch,et al.  Reversible geminate recombination of hydrogen-bonded water molecule pair. , 2008, The Journal of chemical physics.

[39]  P. Courtine,et al.  Improvement of a Bulk Optical Basicity Table for Oxidic Systems , 1998 .

[40]  K. Eisenthal,et al.  Second-harmonic generation and theoretical studies of protonation at the water/α-TiO2 (1 1 0) interface , 2005 .

[41]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[42]  J. Zuo,et al.  Charge density and chemical bonding in rutile, TiO2. , 2003, Acta crystallographica. Section A, Foundations of crystallography.

[43]  Lauren A Austin,et al.  Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. , 2009, Analytical chemistry.

[44]  R. J. Hunter,et al.  Measurement and Interpretation of Electrokinetic Phenomena (IUPAC Technical Report) , 2005 .

[45]  Alexander Lyubartsev,et al.  Systematic coarse-graining of molecular models by the Newton inversion method. , 2010, Faraday discussions.

[46]  Peter T. Cummings,et al.  Electric Double Layer at the Rutile (110) Surface. 1. Structure of Surfaces and Interfacial Water from Molecular Dynamics by Use of ab Initio Potentials , 2004 .

[47]  L. Vlček,et al.  Surface protonation at the rutile (110) interface: explicit incorporation of solvation structure within the refined MUSIC model framework. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[48]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.

[49]  P. Westerhoff,et al.  Titanium dioxide nanoparticles in food and personal care products. , 2012, Environmental science & technology.

[50]  J. Traylor The Lattice Dynamics of Rutile. , 1971 .

[51]  P. Ducheyne,et al.  Hydration and preferential molecular adsorption on titanium in vitro. , 1992, Biomaterials.

[52]  Santiago Alvarez,et al.  A cartography of the van der Waals territories. , 2013, Dalton transactions.

[53]  A. Dasgupta,et al.  Interaction of hemoglobin and copper nanoparticles: implications in hemoglobinopathy. , 2006, Nanomedicine : nanotechnology, biology, and medicine.

[54]  Vijay S Pande,et al.  Building Force Fields: An Automatic, Systematic, and Reproducible Approach. , 2014, The journal of physical chemistry letters.

[55]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[56]  Wei Zhang,et al.  A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations , 2003, J. Comput. Chem..

[57]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[58]  F. A. Grant Properties of Rutile (Titanium Dioxide) , 1959 .

[59]  Bengt Herbert Kasemo,et al.  Biological surface science , 1998 .

[60]  Erkki Ruoslahti,et al.  Targeting of drugs and nanoparticles to tumors , 2010, The Journal of cell biology.

[61]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[62]  A. Bondi van der Waals Volumes and Radii , 1964 .

[63]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[64]  Pratim Biswas,et al.  Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties , 2010, Nanoscale research letters.