TRAJECTORIES AND DISTRIBUTION OF INTERSTELLAR DUST GRAINS IN THE HELIOSPHERE

The solar wind carves a bubble in the surrounding interstellar medium (ISM) known as the heliosphere. Charged interstellar dust grains (ISDG) encountering the heliosphere may be diverted around the heliopause or penetrate it depending on their charge-to-mass ratio. We present new calculations of trajectories of ISDG in the heliosphere, and the dust density distributions that result. We include up-to-date grain charging calculations using a realistic UV radiation field and full three-dimensional magnetohydrodynamic fluid + kinetic models for the heliosphere. Models with two different (constant) polarities for the solar wind magnetic field (SWMF) are used, with the grain trajectory calculations done separately for each polarity. Small grains a gr 0.01 μm are completely excluded from the inner heliosphere. Large grains, a gr 1.0 μm, pass into the inner solar system and are concentrated near the Sun by its gravity. Trajectories of intermediate size grains depend strongly on the SWMF polarity. When the field has magnetic north pointing to ecliptic north, the field de-focuses the grains resulting in low densities in the inner heliosphere, while for the opposite polarity the dust is focused near the Sun. The ISDG density outside the heliosphere inferred from applying the model results to in situ dust measurements is inconsistent with local ISM depletion data for both SWMF polarities but is bracketed by them. This result points to the need to include the time variation in the SWMF polarity during grain propagation. Our results provide valuable insights for interpretation of the in situ dust observations from Ulysses.

[1]  R. Howard Large-Scale Solar Magnetic Fields , 1977 .

[2]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[3]  E. Salpeter,et al.  On the physics of dust grains in hot gas. , 1979 .

[4]  E. Grün,et al.  The motion of charged dust particles in interplanetary space—II. Interstellar grains , 1979 .

[5]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[6]  B. Gustafson Physics of Zodiacal Dust , 1994 .

[7]  A. Tielens,et al.  Grain destruction in shocks in the interstellar medium , 1994 .

[8]  S. Suess,et al.  Flow downstream of the heliospheric terminal shock: Magnetic field line topology and solar cycle imprint , 1995 .

[9]  S. Dermott,et al.  An Estimation of the Interstellar Contribution to the Zodiacal Thermal Emission , 1996 .

[10]  E. Grün,et al.  Physics of interplanetary and interstellar dust , 1996 .

[11]  J. Mathis Dust Models with Tight Abundance Constraints , 1996 .

[12]  E. Dwek Can Composite Fluffy Dust Particles Solve the Interstellar Carbon Crisis? , 1997, astro-ph/9701109.

[13]  M. Landgraf,et al.  Aspects of the mass distribution of interstellar dust grains in the solar system from in situ measurements , 1999 .

[14]  G. Zank Interaction of the solar wind with the local interstellar medium: a theoretical perspective , 1999 .

[15]  H. Kimura,et al.  Filtering of the interstellar dust flow near the heliopause: the importance of secondary electron emission for the grain charging , 1999 .

[16]  I. Mann Interstellar Dust in the Solar System , 2010 .

[17]  W. Kratschmer,et al.  Dust in the local interstellar wind , 1999 .

[18]  M. Landgraf Modeling the motion and distribution of interstellar dust inside the heliosphere , 1999, astro-ph/9906300.

[19]  J. Weingartner,et al.  Dust Grain Size Distributions and Extinction in the Milky Way, LMC, and SMC , 2000, astro-ph/0008146.

[20]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[21]  Richard G. Arendt,et al.  Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints , 2003, astro-ph/0312641.

[22]  E. Jessberger,et al.  Composition, Structure, and Size Distribution of Dust in the Local Interstellar Cloud , 2003 .

[23]  E. Grün,et al.  Penetration of the heliosphere by the interstellar dust stream during solar maximum , 2003 .

[24]  E. Jessberger,et al.  Elemental Abundances and Mass Densities of Dust and Gas in the Local Interstellar Cloud , 2003 .

[25]  I. Mann,et al.  Penetration of interstellar dust grains into the heliosphere , 2003 .

[26]  B. Draine Scattering by Interstellar Dust Grains. I. Optical and Ultraviolet , 2003, astro-ph/0304060.

[27]  M. Witte Kinetic parameters of interstellar neutral helium - Review of results obtained during one solar cycle with the Ulysses/GAS-instrument , 2004 .

[28]  A. Lazarian,et al.  Dust Dynamics in Compressible Magnetohydrodynamic Turbulence , 2004, astro-ph/0408173.

[29]  J. Bertaux,et al.  Deflection of the Interstellar Neutral Hydrogen Flow Across the Heliospheric Interface , 2005, Science.

[30]  J. Weingartner,et al.  Photoelectric Emission from Dust Grains Exposed to Extreme Ultraviolet and X-Ray Radiation , 2006, astro-ph/0601296.

[31]  G. Zank,et al.  Interaction between the solar wind and interstellar gas: A comparison between Monte Carlo and fluid approaches , 2006 .

[32]  G. Gloeckler,et al.  Johannes Geiss’ Investigations of Solar, Heliospheric and Interstellar Matter , 2007 .

[33]  Jeffrey L. Linsky,et al.  The Structure of the Local Interstellar Medium. IV. Dynamics, Morphology, Physical Properties, and Implications of Cloud-Cloud Interactions , 2007, 0709.4480.

[34]  E. Grün,et al.  Cassini/Cosmic Dust Analyzer in situ dust measurements between Jupiter and Saturn , 2007 .

[35]  V. Guillet,et al.  Shocks in dense clouds I. Dust dynamics , 2007 .

[36]  P. Frisch,et al.  The boundary conditions of the heliosphere : photoionization models constrained by interstellar and in situ data , 2007, 0704.0657.

[37]  N. Pogorelov,et al.  The Effects of a κ-Distribution in the Heliosheath on the Global Heliosphere and ENA Flux at 1 AU , 2008, 0803.2538.

[38]  W. Webber,et al.  An asymmetric solar wind termination shock , 2008, Nature.

[39]  B. Draine Perspectives on Interstellar Dust Inside and Outside of the Heliosphere , 2008, 0809.5233.

[40]  N. Pogorelov,et al.  Probing Heliospheric Asymmetries with an MHD-Kinetic model , 2008, 0801.4167.

[41]  N. Pogorelov,et al.  Exclusion of Tiny Interstellar Dust Grains From the Heliosphere , 2009, 0911.1492.

[42]  N. Pogorelov,et al.  Comparison of Interstellar Boundary Explorer Observations with 3D Global Heliospheric Models , 2009, Science.

[43]  M. Gruntman,et al.  Global Observations of the Interstellar Interaction from the Interstellar Boundary Explorer (IBEX) , 2009, Science.

[44]  E. Grün,et al.  The Galactic Environment of the Sun: Interstellar Material Inside and Outside of the Heliosphere , 2009 .

[45]  R. Srama,et al.  Three years of Ulysses dust data: 2005 to 2007 , 2009, 0908.1279.

[46]  T. Henning,et al.  The Ubiquity of Micrometer-Sized Dust Grains in the Dense Interstellar Medium , 2010, Science.

[47]  N. Pogorelov,et al.  MICROSTRUCTURE OF THE HELIOSPHERIC TERMINATION SHOCK: IMPLICATIONS FOR ENERGETIC NEUTRAL ATOM OBSERVATIONS , 2010 .

[48]  R. Vanderspek,et al.  SEPARATION OF THE INTERSTELLAR BOUNDARY EXPLORER RIBBON FROM GLOBALLY DISTRIBUTED ENERGETIC NEUTRAL ATOM FLUX , 2011 .

[49]  S. Redfield,et al.  The Interstellar Medium Surrounding the Sun , 2011 .

[50]  R. Vanderspek,et al.  INTERSTELLAR GAS FLOW PARAMETERS DERIVED FROM INTERSTELLAR BOUNDARY EXPLORER-Lo OBSERVATIONS IN 2009 AND 2010: ANALYTICAL ANALYSIS , 2012 .

[51]  G P Zank,et al.  The Heliosphere’s Interstellar Interaction: No Bow Shock , 2012, Science.

[52]  G. Crew,et al.  VARIATIONS IN THE HELIOSPHERIC POLAR ENERGETIC NEUTRAL ATOM FLUX OBSERVED BY THE INTERSTELLAR BOUNDARY EXPLORER , 2012 .

[53]  R. Srama,et al.  The flow of interstellar dust into the solar system , 2012 .