Aggregation of Imprecise Probabilities

Methods to aggregate convex sets of probabilities are proposed. Source reliability is taken into account by transforming the given information and making it less precise. An important property of the aggregation will be that the precision of the result will depend on the initial compatibility of sources. Special attention will be paid to the particular case of probability intervals giving adaptations of aggregation procedures.

[1]  Kurt VanLehn,et al.  Learning one Subprocedure per Lesson , 1987, Artif. Intell..

[2]  E. Trillas,et al.  ON IMPLICATION AND INDISTINGUISHABILITY IN THE SETTING OF FUZZY LOGIC , 1993 .

[3]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[4]  Smets Ph.,et al.  Belief functions, Non-standard logics for automated reasoning , 1988 .

[5]  T. H. Matheiss,et al.  A Survey and Comparison of Methods for Finding All Vertices of Convex Polyhedral Sets , 1980, Math. Oper. Res..

[6]  Robert L. Winkler,et al.  The Consensus of Subjective Probability Distributions , 1968 .

[7]  Robert A. Hummel,et al.  Combining Bodies of Dependent Information , 1987, IJCAI.

[8]  Keung-Chi Ng,et al.  Consensus diagnosis: a simulation study , 1992, IEEE Trans. Syst. Man Cybern..

[9]  B. Donald,et al.  Symbolic and Numerical Computation for Artificial Intelligence , 1997 .

[10]  David A. Bell,et al.  Generalized Union and Project Operations for Pooling Uncertain and Imprecise Information , 1996, Data Knowl. Eng..

[11]  Luis M. de Campos,et al.  Probability Intervals: a Tool for uncertain Reasoning , 1994, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[12]  K. McConway Marginalization and Linear Opinion Pools , 1981 .

[13]  Christian Genest,et al.  Combining Probability Distributions: A Critique and an Annotated Bibliography , 1986 .

[14]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[15]  Ronald R. Yager,et al.  On the aggregation of prioritized belief structures , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[16]  Robert A. Hummel,et al.  A statistical approach to the representation of uncertainty in beliefs using spread of opinions , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[17]  Michael S. Landy,et al.  Evidence as opinions of experts , 1986, UAI.

[18]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[19]  M. Stone The Opinion Pool , 1961 .

[20]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[21]  Peter Walley,et al.  Measures of Uncertainty in Expert Systems , 1996, Artif. Intell..

[22]  Serafín Moral,et al.  Partial inconsistency of probability envelopes , 1992 .

[23]  Janusz Kacprzyk,et al.  Management decision support systems using fuzzy sets and possibility theory , 1985 .