Design of a chatter-free terminal sliding mode controller for nonlinear fractional-order dynamical systems

This paper investigates the problem of robust control of nonlinear fractional-order dynamical systems in the presence of uncertainties. First, a novel switching surface is proposed and its finite-time stability to the origin is proved. Subsequently, using the sliding mode theory, a robust fractional control law is proposed to ensure the existence of the sliding motion in finite time. We use a fractional Lyapunov stability theory to prove the stability of the system in a given finite time. In order to avoid the chattering, which is inherent in conventional sliding mode controllers, we transfer the sign function of the control input into the fractional derivative of the control signal. The proposed chattering-free sliding mode technique is then applied for stabilisation of a broad class of three-dimensional fractional-order chaotic systems via a single variable driving control input. Simulation results reveal that the proposed fractional sliding mode controller works well for chaos control of fractional-order hyperchaotic Chen, chaotic Lorenz and chaotic Arneodo systems with no-chatter control inputs.

[1]  Guanrong Chen,et al.  A note on the fractional-order Chen system , 2006 .

[2]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[3]  Mohammad Pourmahmood Aghababa,et al.  Synchronization of mechanical horizontal platform systems in finite time , 2012 .

[4]  Choon Ki Ahn,et al.  A T-S Fuzzy Model-Based Adaptive Exponential Synchronization Method for Uncertain Delayed Chaotic Systems: An LMI Approach , 2010 .

[5]  C. Lubich Discretized fractional calculus , 1986 .

[6]  Choon Ki Ahn,et al.  An answer to the open problem of $$\mathcal{L}_2 - \mathcal{L}_\infty$$ synchronization for time-delayed chaotic systems , 2012 .

[7]  M. P. Aghababa,et al.  Design of a sliding mode controller for synchronizing chaotic systems with parameter and model uncertainties and external disturbances , 2012 .

[8]  C. Ahn Fuzzy delayed output feedback synchronization for time-delayed chaotic systems , 2010 .

[9]  Mohammad Pourmahmood Aghababa Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems , 2012 .

[10]  C. Ahn Neural network ℋ∞ chaos synchronization , 2010 .

[11]  Choon Ki Ahn,et al.  An H∞ approach to anti-synchronization for chaotic systems , 2009 .

[12]  Qigui Yang,et al.  Chaos in fractional conjugate Lorenz system and its scaling attractors , 2010 .

[13]  M. P. Aghababa,et al.  A Novel Finite-Time Sliding Mode Controller for Synchronization of Chaotic Systems with Input Nonlinearity , 2013 .

[14]  C. Ahn T–S fuzzy ℋ∞ synchronization for chaotic systems via delayed output feedback control , 2010 .

[15]  Ruoxun Zhang,et al.  Adaptive synchronization of fractional-order chaotic systems via a single driving variable , 2011 .

[16]  Mohammad Pourmahmood Aghababa,et al.  Nonsingular terminal sliding mode approach applied to synchronize chaotic systems with unknown parameters and nonlinear inputs , 2012 .

[17]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[18]  Junwei Wang,et al.  Synchronization in coupled nonidentical incommensurate fractional-order systems , 2009 .

[19]  Liu Feng-ya,et al.  Sliding Mode Synchronization of an Uncertain Fractional Order Chaotic System , 2015 .

[20]  Choon Ki Ahn,et al.  Neural network H ∞ chaos synchronization , 2022 .

[21]  L. Chua,et al.  Absolute Stability Theory and the Synchronization Problem , 1997 .

[22]  Mohammad Pourmahmood Aghababa,et al.  Chaos suppression of a class of unknown uncertain chaotic systems via single input , 2012 .

[23]  Mohammad Pourmahmood Aghababa,et al.  A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs , 2011 .

[24]  Mohammad Pourmahmood Aghababa,et al.  Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities , 2012 .

[25]  Juebang Yu,et al.  Synchronization of fractional-order chaotic systems , 2005, Proceedings. 2005 International Conference on Communications, Circuits and Systems, 2005..

[26]  S. Bhalekar,et al.  Synchronization of different fractional order chaotic systems using active control , 2010 .

[27]  M. P. Aghababa Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller , 2012 .

[28]  Kehui Sun,et al.  Chaos synchronization between two different fractional-order hyperchaotic systems , 2011 .

[29]  Mohammad Pourmahmood Aghababa,et al.  A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances , 2012, Appl. Math. Comput..

[30]  M. P. Aghababa Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique , 2012 .

[31]  M. P. Aghababa,et al.  Finite-time stabilization of uncertain non-autonomous chaotic gyroscopes with nonlinear inputs , 2012 .

[32]  Sung Tae Jung,et al.  Adaptive H∞ synchronization for uncertain chaotic systems with external disturbance , 2010 .

[33]  Junguo Lu,et al.  Nonlinear observer design to synchronize fractional-order chaotic systems via a scalar transmitted signal , 2006 .

[34]  Mehmet Önder Efe,et al.  Fractional Fuzzy Adaptive Sliding-Mode Control of a 2-DOF Direct-Drive Robot Arm , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[35]  Rusins Freivalds An answer to an open problem , 1984, Bull. EATCS.

[36]  Yangquan Chen,et al.  Computers and Mathematics with Applications Stability of Fractional-order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag–leffler Stability , 2022 .

[37]  Mohammad Pourmahmood Aghababa,et al.  Chaos suppression of rotational machine systems via finite-time control method , 2012 .

[38]  M. P. Aghababa,et al.  Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique , 2011 .

[39]  Wei Wei Zhang,et al.  Synchronization between Two Different Fractional Order Hyperchaotic Systems , 2013 .

[40]  Mohammad Pourmahmood Aghababa,et al.  Chaos in a fractional-order micro-electro-mechanical resonator and its suppression , 2012 .

[41]  Mohammad Pourmahmood Aghababa,et al.  Finite-time stabilization of a non-autonomous chaotic rotating mechanical system , 2012, J. Frankl. Inst..

[42]  Jianying Yang,et al.  Chaos synchronization for a class of nonlinear oscillators with fractional order , 2010 .

[43]  Mohammad Pourmahmood Aghababa,et al.  Adaptive Finite-Time Synchronization of Non-Autonomous Chaotic Systems With Uncertainty , 2013 .

[44]  M. P. Aghababa,et al.  A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs , 2012 .

[45]  Choon Ki Ahn,et al.  Output feedback ℋ∞ synchronization for delayed chaotic neural networks , 2009 .

[46]  Liao Xiao-feng,et al.  Impulsive Control for Fractional-Order Chaotic Systems , 2008 .

[47]  Zaid Odibat,et al.  Adaptive feedback control and synchronization of non-identical chaotic fractional order systems , 2010 .

[48]  Mohammad Pourmahmood Aghababa Comments on “Adaptive synchronization of fractional-order chaotic systems via a single driving variable” [Nonlinear Dyn. (2011), doi:10.1007/s11071-011-9944-2] , 2011 .

[49]  Jun-Guo Lu,et al.  Chaotic dynamics and synchronization of fractional-order Arneodo’s systems , 2005 .

[50]  Mohammad Pourmahmood Aghababa,et al.  Chaos suppression of uncertain gyros in a given finite time , 2012 .

[51]  M. P. Aghababa Robust Finite-Time Stabilization of Fractional-Order Chaotic Systems based on Fractional Lyapunov Stability Theory , 2012 .

[52]  Hongtao Lu,et al.  Synchronization of a new fractional-order hyperchaotic system , 2009 .

[53]  Mohammad Pourmahmood Aghababa,et al.  Finite-time stabilization of non-autonomous uncertain chaotic centrifugal flywheel governor systems with input nonlinearities , 2014 .