Electronic band structures and effective-mass parameters of wurtzite GaN and InN

The electronic band structures of wurtzite GaN and InN are calculated by the empirical pseudopotential method (EPM) with the form factors adjusted to reproduce band features which agree with recent experimental data and accurate first-principles calculations. The electron and hole effective masses at the Γ point are obtained using a parabolic line fit. Further, using the effective-mass Hamiltonian and the cubic approximation for wurtzite semiconductors, band edge dispersion at the Γ point obtained using the k.p method is fitted to that calculated using the EPM by adjusting the effective-mass parameters. Thus, we derived important band structure parameters such as the Luttinger-like parameters for GaN and InN which will be useful for material design in wide-gap nitride-based semiconductor lasers employing InGaN. The results also showed that the cubic approximation is fairly successful in the analysis of valence band structures for wurtzite nitrides.

[1]  T. K. Bergstresser,et al.  Band structure of α-Sn, InSb and CdTe including spin-orbit effects , 1968 .

[2]  M. Khan,et al.  Fundamental optical transitions in GaN , 1996 .

[3]  Bo Monemar,et al.  Fundamental energy gap of GaN from photoluminescence excitation spectra , 1974 .

[4]  Gil,et al.  Valence-band physics and the optical properties of GaN epilayers grown onto sapphire with wurtzite symmetry. , 1995, Physical review. B, Condensed matter.

[5]  III–V Semiconducting Nitrides: Physical Properties under Pressure , 1993 .

[6]  S. Grinyaev,et al.  Calculation of the band structure of GaN and InN using the pseudopotential method , 1986 .

[7]  T. Uenoyama,et al.  First-Principles Calculation of Effective Mass Parameters of Gallium Nitride. , 1995 .

[8]  D. Turnbull,et al.  Solid State Physics : Advances in Research and Applications , 1978 .

[9]  Tao Yang,et al.  Electronic Structures of Wurtzite GaN, InN and Their Alloy Ga1-xInxN Calculated by the Tight-Binding Method , 1995 .

[10]  Moustakas,et al.  Optical properties and temperature dependence of the interband transitions of cubic and hexagonal GaN. , 1994, Physical review. B, Condensed matter.

[11]  Gideon Weisz,et al.  Band Structure and Fermi Surface of White Tin , 1966 .

[12]  Yotaro Murakami,et al.  Preparation and optical properties of Ga1−xInxN thin films , 1975 .

[13]  Inspec,et al.  Properties of group III nitrides , 1994 .

[14]  M. Boćkowski,et al.  Luminescence and reflectivity in the exciton region of homoepitaxial GaN layers grown on GaN substrates , 1996 .

[15]  Per-Olov Löwdin,et al.  A Note on the Quantum‐Mechanical Perturbation Theory , 1951 .

[16]  Shuji Nakamura,et al.  Characteristics of InGaN multi‐quantum‐well‐structure laser diodes , 1996 .

[17]  Isamu Akasaki,et al.  Stimulated Emission by Current Injection from an AlGaN/GaN/GaInN Quantum Well Device , 1995 .

[18]  Takashi Mukai,et al.  Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes , 1995 .

[19]  W. Ching,et al.  A minimal basis semi-ab initio approach to the band structures of semiconductors , 1985 .

[20]  G. E. Pikus,et al.  Symmetry and strain-induced effects in semiconductors , 1974 .

[21]  Marvin L. Cohen,et al.  Calculated and Measured Reflectivity of ZnTe and ZnSe , 1970 .

[22]  J. Chelikowsky,et al.  Electronic Structure and Optical Properties of Semiconductors , 1989 .

[23]  S. Nakamura,et al.  Continuous‐wave operation of InGaN multi‐quantum‐well‐structure laser diodes at 233 K , 1996 .

[24]  Chan,et al.  First-principles total-energy calculation of gallium nitride. , 1992, Physical review. B, Condensed matter.

[25]  I. Ortenburger,et al.  Band Structure and Reflectivity of GaN , 1974 .

[26]  K. Miwa,et al.  First-principles calculation of the structural, electronic, and vibrational properties of gallium nitride and aluminum nitride. , 1993, Physical review. B, Condensed matter.

[27]  Su-Huai Wei,et al.  Valence band splittings and band offsets of AlN, GaN, and InN , 1996 .

[28]  James R. Chelikowsky,et al.  Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors , 1976 .

[29]  R. Davis III-V nitrides for electronic and optoelectronic applications , 1991, Proc. IEEE.

[30]  Leonard Kleinman,et al.  New Method for Calculating Wave Functions in Crystals and Molecules , 1959 .

[31]  Ching,et al.  Electronic, optical, and structural properties of some wurtzite crystals. , 1993, Physical review. B, Condensed matter.

[32]  S. Nakamura,et al.  InGaN-Based Multi-Quantum-Well-Structure Laser Diodes , 1996 .

[33]  L. Reining,et al.  The electronic structure of gallium nitride , 1993 .

[34]  M. Khan,et al.  Electronic structure, surface composition and long-range order in GaN , 1993 .

[35]  Nelson,et al.  Explicit treatment of the gallium 3d electrons in GaN using the plane-wave pseudopotential method. , 1994, Physical review. B, Condensed matter.

[36]  Cathy P. Foley,et al.  Optical band gap of indium nitride , 1986 .

[37]  I. Gorczyca,et al.  Band structure and high-pressure phase transition in GaN , 1991 .

[38]  Marc Ilegems,et al.  Absorption, Reflectance, and Luminescence of GaN Epitaxial Layers , 1971 .

[39]  Christensen,et al.  Optical and structural properties of III-V nitrides under pressure. , 1994, Physical review. B, Condensed matter.

[40]  Marvin L. Cohen,et al.  Band Structures and Pseudopotential Form Factors for Fourteen Semiconductors of the Diamond and Zinc-blende Structures , 1966 .

[41]  Shun Lien Chuang,et al.  k.p method for strained wurtzite semiconductors , 1996 .

[42]  Kusunoki Volume-expansion-induced lattice instability and solid-state amorphization. , 1996, Physical review. B, Condensed matter.

[43]  J. Dow,et al.  Band structure of InN , 1987 .

[44]  Tsai,et al.  Pseudofunction theory of the electronic structure of InN. , 1988, Physical review. B, Condensed matter.

[45]  John Arents,et al.  Atomic Structure Calculations , 1964 .

[46]  S. Bloom Band structures of GaN and AIN , 1971 .

[47]  Tansley,et al.  Pseudopotential band structure of indium nitride. , 1986, Physical review. B, Condensed matter.