A framework for the local information dynamics of distributed computation in complex systems

The nature of distributed computation has long been a topic of interest in complex systems science, physics, artificial life and bioinformatics. In particular, emergent complex behavior has often been described from the perspective of computation within the system (Mitchell 1998b,a) and has been postulated to be associated with the capability to support universal computation (Langton 1990; Wolfram 1984c; Casti 1991).

[1]  J. Mackie,et al.  I . CAUSES AND CONDITIONS , 2008 .

[2]  Jevin D. West,et al.  Evidence for complex, collective dynamics and emergent, distributed computation in plants , 2004, Proc. Natl. Acad. Sci. USA.

[3]  Larry S Yaeger,et al.  How evolution guides complexity , 2009, HFSP journal.

[4]  Mats G. Nordahl,et al.  Complexity Measures and Cellular Automata , 1988, Complex Syst..

[5]  M R DeWeese,et al.  How to measure the information gained from one symbol. , 1999, Network.

[6]  Minoru Asada,et al.  Initialization and self‐organized optimization of recurrent neural network connectivity , 2009, HFSP journal.

[7]  Nina Peuhkuri Fish Cognition and Behavior, Culum Brown, Kevin Laland, Jens Krause (Eds.). Blackwell, Oxford (2006), Pp. xviii+328. Price £99.50 hardback , 2008 .

[8]  James P. Crutchfield,et al.  Intrinsic Quantum Computation , 2008 .

[9]  Antonio Politi,et al.  Thermodynamics and Complexity of Cellular Automata , 1997 .

[10]  M. Garzon Linear Cellular Automata , 1995 .

[11]  J. Tuszynski,et al.  A review of the ferroelectric model of microtubules , 1999 .

[12]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[13]  Y. Kuniyoshi,et al.  Detecting direction of causal interactions between dynamically coupled signals. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  N. Margolus,et al.  Invertible cellular automata: a review , 1991 .

[15]  Albert Y. Zomaya,et al.  Information Transfer by Particles in Cellular Automata , 2007, ACAL.

[16]  D. Richardson,et al.  Tessellations with Local Transformations , 1972, J. Comput. Syst. Sci..

[17]  Barbara Webb,et al.  Swarm Intelligence: From Natural to Artificial Systems , 2002, Connect. Sci..

[18]  J. Crutchfield The calculi of emergence: computation, dynamics and induction , 1994 .

[19]  T. Yamada,et al.  Spatio-temporal complex dynamics and computation in chaotic neural networks , 1994, ETFA '94. 1994 IEEE Symposium on Emerging Technologies and Factory Automation. (SEIKEN) Symposium) -Novel Disciplines for the Next Century- Proceedings.

[20]  Mikhail Prokopenko,et al.  Functional and Structural Topologies in Evolved Neural Networks , 2009, ECAL.

[21]  S. Wolfram Computation theory of cellular automata , 1984 .

[22]  Chrystopher L. Nehaniv,et al.  Empowerment: a universal agent-centric measure of control , 2005, 2005 IEEE Congress on Evolutionary Computation.

[23]  Matthew Cook,et al.  Universality in Elementary Cellular Automata , 2004, Complex Syst..

[24]  Mats G. Nordahl,et al.  Continuity of Information Transport in Surjective Cellular Automata , 2007 .

[25]  Sweden. Sekretariatet för framtidsstudier,et al.  Beyond Belief: Randomness, Prediction and Explanation in Science , 1990 .

[26]  Olaf Sporns,et al.  Network structure of cerebral cortex shapes functional connectivity on multiple time scales , 2007, Proceedings of the National Academy of Sciences.

[27]  Marc M. Van Hulle,et al.  Information Theoretic Derivations for Causality Detection: Application to Human Gait , 2007, ICANN.

[28]  Massimo Marchiori,et al.  Model for cascading failures in complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Andrew Wuensche,et al.  Classifying cellular automata automatically: Finding gliders, filtering, and relating space-time patterns, attractor basins, and the Z parameter , 1998, Complex..

[30]  Cees van Leeuwen,et al.  Distributed Dynamical Computation in Neural Circuits with Propagating Coherent Activity Patterns , 2009, PLoS Comput. Biol..

[31]  David J. Hill,et al.  Cascading failure in Watts–Strogatz small-world networks , 2010 .

[32]  Ursula Kummer,et al.  Information transfer in signaling pathways: A study using coupled simulated and experimental data , 2008, BMC Bioinformatics.

[33]  Directed information structure in inter-regional cortical interactions in a visuomotor tracking task , 2009, BMC Neuroscience.

[34]  J. Martinerie,et al.  Statistical assessment of nonlinear causality: application to epileptic EEG signals , 2003, Journal of Neuroscience Methods.

[35]  Naftali Tishby,et al.  Complexity through nonextensivity , 2001, physics/0103076.

[36]  Olaf Sporns,et al.  Evolving Coordinated Behavior by Maximizing Information Structure , 2006 .

[38]  J. Sutherland The Quark and the Jaguar , 1994 .

[39]  V. Paxson,et al.  Notices of the American Mathematical Society , 1998 .

[40]  O. Kinouchi,et al.  Optimal dynamical range of excitable networks at criticality , 2006, q-bio/0601037.

[41]  Albert Y. Zomaya,et al.  Emergence of Glider-like Structures in a Modular Robotic System , 2008, ALIFE.

[42]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[43]  R. Solé,et al.  Information Theory of Complex Networks: On Evolution and Architectural Constraints , 2004 .

[44]  D. Rand,et al.  Dynamical Systems and Turbulence, Warwick 1980 , 1981 .

[45]  Ivan Tanev,et al.  Automated evolutionary design, robustness, and adaptation of sidewinding locomotion of a simulated snake-like robot , 2005, IEEE Transactions on Robotics.

[46]  Albert Y. Zomaya,et al.  Local information transfer as a spatiotemporal filter for complex systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Melanie Mitchell,et al.  A Complex-Systems Perspective on the "Computation vs. Dynamics" Debate in Cognitive Science , 1998 .

[48]  Daniel Polani,et al.  How Information and Embodiment Shape Intelligent Information Processing , 2006, 50 Years of Artificial Intelligence.

[49]  Kenneth Steiglitz,et al.  Computing with Solitons: A Review and Prospectus , 2002, Collision-Based Computing.

[50]  Ricard V Solé,et al.  Neutral fitness landscapes in signalling networks , 2007, Journal of The Royal Society Interface.

[51]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[52]  Vadas Gintautas,et al.  Identification of functional information subgraphs in complex networks. , 2007, Physical review letters.

[53]  M. Corbetta,et al.  Top-Down Control of Human Visual Cortex by Frontal and Parietal Cortex in Anticipatory Visual Spatial Attention , 2008, The Journal of Neuroscience.

[54]  Carlos Gershenson,et al.  Phase Transitions in Random Boolean Networks with Different Updating Schemes , 2003, ArXiv.

[55]  S. Frenzel,et al.  Partial mutual information for coupling analysis of multivariate time series. , 2007, Physical review letters.

[56]  Chrystopher L. Nehaniv,et al.  Tracking Information Flow through the Environment: Simple Cases of Stigmerg , 2004 .

[57]  R. Rosen Life Itself: A Comprehensive Inquiry Into the Nature, Origin, and Fabrication of Life , 1991 .

[58]  Olaf Sporns,et al.  Evolution of Neural Structure and Complexity in a Computational Ecology , 2006 .

[59]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[60]  Michael A. Savageau,et al.  Effects of alternative connectivity on behavior of randomly constructed Boolean networks , 2002 .

[61]  Andrew Adamatzky,et al.  Phenomenology of glider collisions in cellular automaton Rule 54 and associated logical gates , 2006 .

[62]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[63]  Melanie Mitchell,et al.  Evolving Cellular Automata with Genetic Algorithms: A Review of Recent Work , 2000 .

[64]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[65]  James P. Crutchfield,et al.  Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations , 1993, Complex Syst..

[66]  Thomas Pellizzari,et al.  Non-Standard Computation , 1997 .

[67]  Stephen Wolfram,et al.  Cellular automata as models of complexity , 1984, Nature.

[68]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[69]  John Hallam,et al.  From Animals to Animats 10 , 2008 .

[70]  James P. Crutchfield,et al.  Prediction, Retrodiction, and the Amount of Information Stored in the Present , 2009, ArXiv.

[71]  D. Saad Europhysics Letters , 1997 .

[72]  Charles H. Bennett,et al.  Notes on Landauer's Principle, Reversible Computation, and Maxwell's Demon , 2002, physics/0210005.

[73]  Albert Y. Zomaya,et al.  Assortativeness and information in scale-free networks , 2009 .

[74]  Melanie Mitchell,et al.  Computation in Cellular Automata: A Selected Review , 2005, Non-standard Computation.

[75]  James P Crutchfield,et al.  Time's barbed arrow: irreversibility, crypticity, and stored information. , 2009, Physical review letters.

[76]  Carlos Gershenson,et al.  Introduction to Random Boolean Networks , 2004, ArXiv.

[77]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[78]  Ralf Der,et al.  Homeokinesis - A new principle to back up evolution with learning , 1999 .

[79]  S. Abu-Sharkha,et al.  Can microgrids make a major contribution to UK energy supply ? , 2005 .

[80]  Chrystopher L. Nehaniv,et al.  Keep Your Options Open: An Information-Based Driving Principle for Sensorimotor Systems , 2008, PloS one.

[81]  James P. Crutchfield,et al.  Computational mechanics of cellular automata: an example , 1997 .

[82]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[83]  Carlos Gershenson,et al.  Complexity and Philosophy , 2006, ArXiv.

[84]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[85]  T. Schreiber,et al.  Information transfer in continuous processes , 2002 .

[86]  Kwang-Il Goh,et al.  Burstiness and memory in complex systems , 2006 .

[87]  I. Prigogine,et al.  Irreversibility and nonlocality , 1983 .

[88]  Melanie Mitchell,et al.  Complex systems: Network thinking , 2006, Artif. Intell..

[89]  M. Paluš,et al.  Inferring the directionality of coupling with conditional mutual information. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[90]  J. Rogers Chaos , 1876 .

[91]  Ralf Der,et al.  A Sensor-Based Learning Algorithm for the Self-Organization of Robot Behavior , 2009, Algorithms.

[92]  Yasuo Kuniyoshi,et al.  Methods for Quantifying the Causal Structure of bivariate Time Series , 2007, Int. J. Bifurc. Chaos.

[93]  Daniel Polani Foundations and Formalizations of Self-organization , 2008, Advances in Applied Self-organizing Systems.

[94]  Vito Latora,et al.  Modeling cascading failures in the North American power grid , 2005 .

[95]  J. P. Crutchfield,et al.  From finite to infinite range order via annealing: the causal architecture of deformation faulting in annealed close-packed crystals , 2004 .

[96]  Albert Y. Zomaya,et al.  Local assortativity and growth of Internet , 2009 .

[97]  Rolf Landauer,et al.  Information is Physical , 1991, Workshop on Physics and Computation.

[98]  G. Parisi,et al.  Scale-free correlations in starling flocks , 2009, Proceedings of the National Academy of Sciences.

[99]  Larry Yaeger,et al.  Passive and Driven Trends in the Evolution of Complexity , 2011, ALIFE.

[100]  F. Takens Detecting strange attractors in turbulence , 1981 .

[101]  Jason Lloyd-Price,et al.  Mutual information in random Boolean models of regulatory networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[102]  J. Urry Complexity , 2006, Interpreting Art.

[103]  David Eppstein,et al.  Searching for Spaceships , 2000, ArXiv.

[104]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[105]  N. Ay,et al.  A UNIFYING FRAMEWORK FOR COMPLEXITY MEASURES OF FINITE SYSTEMS , 2006 .

[106]  David Bawden,et al.  Book Review: Evolution and Structure of the Internet: A Statistical Physics Approach. , 2006 .

[107]  V Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[108]  Ernesto Estrada,et al.  Information mobility in complex networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[109]  John Gribbin,et al.  Deep Simplicity: Chaos, Complexity and the Emergence of Life , 2004 .

[110]  P. Grassberger Toward a quantitative theory of self-generated complexity , 1986 .

[111]  Albert Y. Zomaya,et al.  Detecting Non-trivial Computation in Complex Dynamics , 2007, ECAL.

[112]  C. Moore,et al.  Automatic filters for the detection of coherent structure in spatiotemporal systems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[113]  Klaus Sutner,et al.  Computation theory of cellular automata , 1998 .

[114]  Young,et al.  Inferring statistical complexity. , 1989, Physical review letters.

[115]  Moritz Grosse-Wentrup,et al.  Understanding Brain Connectivity Patterns during Motor Imagery for Brain-Computer Interfacing , 2008, NIPS.

[116]  A. Wuensche Classifying cellular automata automatically: finding gliders, filtering, and relating space-time patterns, attractor basins, and the Z parameter , 1999 .

[117]  Howard Gutowitz,et al.  The topological skeleton of cellular automaton dynamics , 1997 .

[118]  D E Edmundson,et al.  Fully three-dimensional collisions of bistable light bullets. , 1993, Optics letters.

[119]  Hualou Liang,et al.  Temporal dynamics of information flow in the cerebral cortex , 2001, Neurocomputing.

[120]  E. Berlekamp,et al.  Winning Ways for Your Mathematical Plays , 1983 .

[121]  T. Rohlf,et al.  Damage spreading and criticality in finite random dynamical networks. , 2007, Physical review letters.

[122]  Evandro Agazzi,et al.  What is Complexity , 2002 .

[123]  James P. Crutchfield,et al.  Synchronizing to Periodicity: the Transient Information and Synchronization Time of Periodic Sequences , 2002, Adv. Complex Syst..

[124]  Karl J. Friston Functional and effective connectivity in neuroimaging: A synthesis , 1994 .

[125]  E. F. Codd,et al.  Cellular automata , 1968 .

[126]  M. Brass,et al.  Unconscious determinants of free decisions in the human brain , 2008, Nature Neuroscience.

[127]  Jakob Heinzle,et al.  Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity , 2010, Journal of Computational Neuroscience.

[128]  K. Goh,et al.  Universal behavior of load distribution in scale-free networks. , 2001, Physical review letters.

[129]  M. Prokopenko Guided self‐organization , 2009, HFSP journal.

[130]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[131]  J. Massey CAUSALITY, FEEDBACK AND DIRECTED INFORMATION , 1990 .

[132]  Norbert Schuff,et al.  Summarizing complexity in high dimensions. , 2005, Physical review letters.

[133]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[134]  J. Crutchfield,et al.  The attractor—basin portrait of a cellular automaton , 1992 .

[135]  Christof Teuscher,et al.  Novel Computing Paradigms: Quo Vadis? , 2008 .

[136]  Carl S. McTague,et al.  The organization of intrinsic computation: complexity-entropy diagrams and the diversity of natural information processing. , 2008, Chaos.

[137]  P. F. Verdes Assessing causality from multivariate time series. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[138]  S. Kauffman,et al.  Measures for information propagation in Boolean networks , 2007 .

[139]  Lawrence F. Gray,et al.  A Mathematician Looks at Wolfram''s New Kind of Science , 2003 .

[140]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[141]  Ronald H. Epp Aristotle: A Contemporary Appreciation , 1975 .

[142]  Yao-Chen Hung,et al.  Chaotic communication via temporal transfer entropy. , 2008, Physical review letters.

[143]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[144]  P Grassberger,et al.  COMMENT: Some more exact enumeration results for 1D cellular automata , 1987 .

[145]  Guanrong Chen,et al.  Optimal weighting scheme for suppressing cascades and traffic congestion in complex networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[146]  Mats G. Nordahl,et al.  Universal Computation in Simple One-Dimensional Cellular Automata , 1990, Complex Syst..

[147]  C. Shalizi,et al.  Causal architecture, complexity and self-organization in time series and cellular automata , 2001 .

[148]  G. Edelman,et al.  A measure for brain complexity: relating functional segregation and integration in the nervous system. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[149]  Fernando J. Corbacho,et al.  Towards a New Information Processing Measure for Neural Computation , 2002, ICANN.

[150]  Mikhail Prokopenko,et al.  Evolving Spatiotemporal Coordination in a Modular Robotic System , 2006, SAB.

[151]  James P. Crutchfield,et al.  Information accessibility and cryptic processes , 2009, 0905.4787.

[152]  Karoline Wiesner,et al.  Information erasure lurking behind measures of complexity , 2009, ArXiv.

[153]  M. Aldana Boolean dynamics of networks with scale-free topology , 2003 .

[154]  Albert Y. Zomaya,et al.  Information modification and particle collisions in distributed computation. , 2010, Chaos.

[155]  T. Schreiber Interdisciplinary application of nonlinear time series methods , 1998, chao-dyn/9807001.

[156]  Jonathan M. Nichols,et al.  Application of information theory methods to food web reconstruction , 2007 .

[157]  Mikhail Prokopenko,et al.  Differentiating information transfer and causal effect , 2008, 0812.4373.

[158]  Albert-László Barabási,et al.  Scale-free networks , 2008, Scholarpedia.

[159]  Albert Y. Zomaya,et al.  The Information Dynamics of Phase Transitions in Random Boolean Networks , 2008, ALIFE.

[160]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[161]  L. Goddard Information Theory , 1962, Nature.

[162]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[163]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[164]  B. Derrida,et al.  Random networks of automata: a simple annealed approximation , 1986 .

[165]  Stefan Bode,et al.  Decoding sequential stages of task preparation in the human brain , 2009, NeuroImage.

[166]  Arthur W. Burks On backwards-deterministic, erasable, and Garden-of-Eden automata , 1971 .

[167]  Melanie Mitchell,et al.  Evolving cellular automata to perform computations: mechanisms and impediments , 1994 .

[168]  Olaf Sporns,et al.  Mapping Information Flow in Sensorimotor Networks , 2006, PLoS Comput. Biol..

[169]  David C. Sterratt,et al.  Does Morphology Influence Temporal Plasticity? , 2002, ICANN.

[170]  J. Crutchfield,et al.  Structural information in two-dimensional patterns: entropy convergence and excess entropy. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[171]  N. Ay,et al.  Information and closure in systems theory , 2006 .

[172]  O. Maroney Generalizing Landauer's principle. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[173]  J. Crutchfield,et al.  Upper bound on the products of particle interactions in cellular automata , 2000, nlin/0008038.

[174]  Randall D. Beer,et al.  Nonnegative Decomposition of Multivariate Information , 2010, ArXiv.

[175]  E. Schrödinger,et al.  What is life? : the physical aspect of the living cell , 1946 .

[176]  O. Yli-Harja,et al.  Perturbation avalanches and criticality in gene regulatory networks. , 2006, Journal of theoretical biology.

[177]  Ricard V. Solé,et al.  Phase Transitions in a Model of Internet Traffic , 2000 .

[178]  P. Grassberger New mechanism for deterministic diffusion , 1983 .

[179]  Fei-Fei Li,et al.  Exploring Functional Connectivities of the Human Brain using Multivariate Information Analysis , 2009, NIPS.

[180]  R. Burchfield Oxford English dictionary , 1982 .

[181]  Chrystopher L. Nehaniv,et al.  All Else Being Equal Be Empowered , 2005, ECAL.

[182]  Ralf Der,et al.  Predictive information and explorative behavior of autonomous robots , 2008 .

[183]  Woo-Sung Jung,et al.  Transfer Entropy Analysis of the Stock Market , 2005 .

[184]  Stephen Grossberg,et al.  Running as fast as it can: How spiking dynamics form object groupings in the laminar circuits of visual cortex , 2010, Journal of Computational Neuroscience.

[185]  A. N. Sharkovskiĭ Dynamic systems and turbulence , 1989 .

[186]  T. James,et al.  An additive-factors design to disambiguate neuronal and areal convergence: measuring multisensory interactions between audio, visual, and haptic sensory streams using fMRI , 2009, Experimental Brain Research.

[188]  X San Liang,et al.  Information flow within stochastic dynamical systems. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[189]  BMC Bioinformatics , 2005 .

[190]  Chrystopher L. Nehaniv,et al.  Representations of Space and Time in the Maximization of Information Flow in the Perception-Action Loop , 2007, Neural Computation.

[191]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[192]  Mikhail Prokopenko,et al.  An information-theoretic primer on complexity, self-organization, and emergence , 2009 .

[193]  Phil Husbands,et al.  Tracking Information Flow through the Environment: Simple Cases of Stigmergy , 2004 .

[194]  S. Kauffman,et al.  Measuring information propagation and retention in boolean networks and its implications to a model of human organizations , 2006 .

[195]  Francis Ratnieks,et al.  Outsmarted by ants , 2005, Nature.

[196]  James P. Crutchfield,et al.  Computational Mechanics: Pattern and Prediction, Structure and Simplicity , 1999, ArXiv.

[197]  K. Marton,et al.  Entropy and the Consistent Estimation of Joint Distributions , 1993, Proceedings. IEEE International Symposium on Information Theory.

[198]  Olaf Sporns,et al.  Information flow in local cortical networks is not democratic , 2008, BMC Neuroscience.

[199]  Rafael Morgado,et al.  Synchronization in the presence of memory , 2006, nlin/0610026.

[200]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[201]  Adilson E Motter,et al.  Cascade-based attacks on complex networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[202]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[203]  E. Schrödinger What Is Life , 1946 .

[204]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[205]  A. Barabasi,et al.  Scale-free characteristics of random networks: the topology of the world-wide web , 2000 .

[206]  Martin Brown,et al.  Information-theoretic sensitivity analysis: a general method for credit assignment in complex networks , 2007, Journal of The Royal Society Interface.

[207]  Stefano Nolfi,et al.  Evolving coordinated group behaviours through maximisation of mean mutual information , 2008, Swarm Intelligence.

[208]  N. Boccara,et al.  Particlelike structures and their interactions in spatiotemporal patterns generated by one-dimensional deterministic cellular-automaton rules. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[209]  Peter Grassberger,et al.  Information content and predictability of lumped and distributed dynamical systems , 1989 .

[210]  Olaf Sporns,et al.  Methods for quantifying the informational structure of sensory and motor data , 2007, Neuroinformatics.

[211]  T R Ramamohan,et al.  Stress fluctuations in sheared Stokesian suspensions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[212]  J. Goldman,et al.  LINEAR CELLULAR AUTOMATA WITH , 1990 .

[213]  Sanjay Jain,et al.  The regulatory network of E. coli metabolism as a Boolean dynamical system exhibits both homeostasis and flexibility of response , 2007 .

[214]  M. Prokopenko,et al.  Evolving Spatiotemporal Coordination in a Modular Robotic System , 2006, SAB.

[215]  Jon T. Butler,et al.  Multiple-valued logic , 1995 .

[216]  Schreiber,et al.  Measuring information transfer , 2000, Physical review letters.

[217]  Cosma Rohilla Shalizi,et al.  Methods and Techniques of Complex Systems Science: An Overview , 2003, nlin/0307015.

[218]  K. Steiglitz,et al.  Soliton-like behavior in automata , 1986 .

[219]  J. Crutchfield,et al.  Regularities unseen, randomness observed: levels of entropy convergence. , 2001, Chaos.

[220]  James P. Crutchfield,et al.  Dynamics, computation, and the “edge of chaos”: a re-examination , 1993, adap-org/9306003.

[221]  Hans-Jochen Heinze,et al.  Causal visual interactions as revealed by an information theoretic measure and fMRI , 2006, NeuroImage.

[222]  Joshua Filer Fish Cognition and Behavior. Fish and Aquatic Resources Series 11 , 2008 .

[223]  Robert Haslinger,et al.  Quantifying self-organization with optimal predictors. , 2004, Physical review letters.

[224]  K. Hlavácková-Schindler,et al.  Causality detection based on information-theoretic approaches in time series analysis , 2007 .

[225]  Albert-László Barabási,et al.  Scale-Free Networks: A Decade and Beyond , 2009, Science.

[226]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[227]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[228]  N. Ay,et al.  Complexity measures from interaction structures. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[229]  Vasily A. Vakorin,et al.  Confounding effects of indirect connections on causality estimation , 2009, Journal of Neuroscience Methods.

[230]  Mats G. Nordahl,et al.  Local Information in One-Dimensional Cellular Automata. : ACRI 2004 proceedings , 2004 .

[231]  A. Kraskov,et al.  Estimating mutual information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[232]  Kevin B. Korb,et al.  An Information-theoretic Approach to Causal Power , 2005 .

[233]  James P. Crutchfield,et al.  Discovering Noncritical Organization: Statistical Mechanical, Information Theoretic, and Computational Views of Patterns in One-Dimensional Spin Systems , 1998, Entropy.

[234]  Edward T. Bullmore,et al.  Broadband Criticality of Human Brain Network Synchronization , 2009, PLoS Comput. Biol..

[235]  Kenneth Steiglitz,et al.  Information transfer between solitary waves in the saturable Schrödinger equation , 1997 .

[236]  J. Gibson The Ecological Approach to Visual Perception , 1979 .

[237]  C. Stam,et al.  Small‐world properties of nonlinear brain activity in schizophrenia , 2009, Human brain mapping.

[238]  Jung,et al.  Coherent structure analysis of spatiotemporal chaos , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[239]  Peter Grassberger,et al.  Long-range effects in an elementary cellular automaton , 1986 .

[240]  Marco Tomassini,et al.  Semi-synchronous Activation in Scale-Free Boolean Networks , 2007, ECAL.

[241]  David Cornforth,et al.  The information dynamics of cascading failures in energy networks , 2009 .

[242]  Mikhail Prokopenko,et al.  Complexity metrics for self-monitoring impact sensing networks , 2005, 2005 NASA/DoD Conference on Evolvable Hardware (EH'05).

[243]  Y. Yoshikawa,et al.  Causality detected by transfer entropy leads acquisition of joint attention , 2007, 2007 IEEE 6th International Conference on Development and Learning.

[244]  Albert-László Barabási,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW , 2004 .

[245]  D. Green Emergent Behavior in Biological Systems , 1993 .

[246]  D. S. Coffey Self-organization, complexity and chaos: The new biology for medicine , 1998, Nature Medicine.

[247]  S. Bornholdt,et al.  Boolean Network Model Predicts Cell Cycle Sequence of Fission Yeast , 2007, PloS one.

[248]  Octavio Miramontes Order-disorder transitions in the behavior of ant societies , 1995, Complex..

[249]  Eckehard Olbrich,et al.  How should complexity scale with system size? , 2008 .

[250]  Bruno Martin,et al.  A Group Interpretation Of Particles Generated By One-Dimensional Cellular Automaton, Wolfram'S Rule 54 , 2000 .

[251]  I. Couzin Collective minds , 2007, Nature.

[252]  Christian Bettstetter,et al.  Self-organization in communication networks: principles and design paradigms , 2005, IEEE Communications Magazine.

[253]  Daniel Polani,et al.  Information Flows in Causal Networks , 2008, Adv. Complex Syst..

[254]  D. Parisi,et al.  Measuring Coordination as Entropy Decrease in Groups of Linked Simulated Robots , 2005 .

[255]  P. Ormerod,et al.  Global recessions as a cascade phenomenon with interacting agents , 2009 .

[256]  K. Showalter,et al.  Wave propagation in subexcitable media with periodically modulated excitability. , 2001, Physical review letters.

[257]  Mats G. Nordahl,et al.  Local Information in One-Dimensional Cellular Automata , 2004, ACRI.

[258]  Pau Fernandez,et al.  The Role of Computation in Complex Regulatory Networks , 2003, q-bio/0311012.

[259]  Wolfgang Banzhaf,et al.  Advances in Artificial Life , 2003, Lecture Notes in Computer Science.

[260]  L Jaeger,et al.  Top-down causation by information control: from a philosophical problem to a scientific research programme , 2007, Journal of The Royal Society Interface.

[261]  Terry Bossomaier,et al.  Hyperplane localisation of self-replicating and other complex cellular automata rules , 2005, 2005 IEEE Congress on Evolutionary Computation.

[262]  Doheon Lee,et al.  Inferring Gene Regulatory Networks from Microarray Time Series Data Using Transfer Entropy , 2007, Twentieth IEEE International Symposium on Computer-Based Medical Systems (CBMS'07).