On universality of classical probability with contextually labeled random variables

One can often encounter claims that classical (Kolmogorovian) probability theory cannot handle, or even is contradicted by, certain empirical findings or substantive theories. This note joins several previous attempts to explain that these claims are unjustified, illustrating this on the issues of (non)existence of joint distributions, probabilities of ordered events, and additivity of probabilities. The specific focus of this note is on showing that the mistakes underlying these claims can be precluded by labeling all random variables involved contextually. Moreover, contextual labeling also enables a valuable additional way of analyzing probabilistic aspects of empirical situations: determining whether the random variables involved form a contextual system, in the sense generalized from quantum mechanics. Thus, to the extent the Wang-Busemeyer QQ equality for the question order effect holds, the system describing them is noncontextual. The double-slit experiment and its behavioral analogues also turn out to form a noncontextual system, having the same probabilistic format (cyclic system of rank 4) as the one describing spins of two entangled electrons.

[1]  Ehtibar N. Dzhafarov,et al.  Selectivity in Probabilistic Causality: Where Psychology Runs Into Quantum Physics , 2011, 1110.2388.

[2]  Polina Khrennikova,et al.  A Quantum Framework for 'Sour Grapes' in Cognitive Dissonance , 2013, QI.

[3]  Jerome R. Busemeyer,et al.  A Quantum Question Order Model Supported by Empirical Tests of an A Priori and Precise Prediction , 2013, Top. Cogn. Sci..

[4]  Janne Kujala,et al.  Probability, Random Variables, and Selectivity , 2013, 1312.2239.

[5]  J. A. Barros,et al.  Quantum Cognition, Neural Oscillators, and Negative Probabilities , 2017 .

[6]  T. Lindvall Lectures on the Coupling Method , 1992 .

[7]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[8]  J. Busemeyer,et al.  A quantum probability explanation for violations of ‘rational’ decision theory , 2009, Proceedings of the Royal Society B: Biological Sciences.

[9]  Ehtibar N. Dzhafarov,et al.  Replacing Nothing with Something Special: Contextuality-by-Default and Dummy Measurements , 2017, 1703.06752.

[10]  Arthur Fine,et al.  Joint distributions, quantum correlations, and commuting observables , 1982 .

[11]  Jan-Åke Larsson,et al.  Necessary and Sufficient Conditions for an Extended Noncontextuality in a Broad Class of Quantum Mechanical Systems. , 2014, Physical review letters.

[12]  Karl Svozil,et al.  Tracing the bounds on Bell‐type inequalities , 2005 .

[13]  Joseph P. Zbilut,et al.  A Preliminary Experimental Verification On the Possibility of Bell Inequality Violation in Mental States , 2008 .

[14]  Ehtibar N. Dzhafarov,et al.  Context-Content Systems of Random Variables: The Contextuality-by-Default Theory , 2015, 1511.03516.

[15]  James T. Townsend,et al.  Quantum dynamics of human decision-making , 2006 .

[16]  A. Khrennikov Two-slit experiment: quantum and classical probabilities , 2015 .

[17]  Foundations of quantum probability , 1993 .

[18]  Leslie E Ballentine,et al.  Probability theory in quantum mechanics , 1986 .

[19]  Ru Zhang,et al.  Is there contextuality in behavioural and social systems? , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  R. N. Schouten,et al.  Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km , 2015, 1508.05949.

[21]  Ehtibar N. Dzhafarov,et al.  Contextuality is about identity of random variables , 2014, 1405.2116.

[22]  Janne Kujala,et al.  Probabilistic foundations of contextuality , 2016, 1604.08412.

[23]  Diederik Aerts,et al.  Quantum Structure in Cognition , 2008, 0805.3850.

[24]  J. Busemeyer,et al.  Empirical Comparison of Markov and Quantum models of decision-making , 2009 .

[25]  Emmanuel Haven,et al.  A Generalized Probability Framework to Model Economic Agents' Decisions Under Uncertainty , 2015, 1511.06734.

[26]  Diederik Aerts,et al.  Quantum Structure in Cognition: Why and How Concepts Are Entangled , 2011, QI.

[27]  Harald Atmanspacher,et al.  Epistemic and Ontic Quantum Realities , 2003 .

[28]  Guillaume Adenier,et al.  Is the fair sampling assumption supported by EPR experiments , 2007 .

[29]  Ehtibar N. Dzhafarov,et al.  Contextuality Analysis of the Double Slit Experiment (with a Glimpse into Three Slits) , 2018, Entropy.

[30]  Irina Basieva,et al.  Quantum-like dynamics applied to cognition: a consideration of available options , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[32]  Ehtibar N. Dzhafarov,et al.  A Qualified Kolmogorovian Account of Probabilistic Contextuality , 2013, QI.

[33]  Ehtibar N. Dzhafarov,et al.  Snow Queen Is Evil and Beautiful: Experimental Evidence for Probabilistic Contextuality in Human Choices , 2017, Decision.

[34]  Ehtibar N. Dzhafarov,et al.  Contextuality-by-Default: A Brief Overview of Ideas, Concepts, and Terminology , 2015, QI.

[35]  Diederik Aerts,et al.  Quantum theory and human perception of the macro-world , 2014, Front. Psychol..

[36]  Andrei Khrennikov,et al.  Ubiquitous Quantum Structure: From Psychology to Finance , 2010 .

[37]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[38]  B. Jacobs Quantum effect logic in cognition , 2017 .

[39]  Diederik Aerts,et al.  Quantum Particles as Conceptual Entities: A Possible Explanatory Framework for Quantum Theory , 2009, 1004.2530.

[40]  Andrei Khrennikov Classical and quantum mechanics on information spaces with applications to cognitive, psychological, social and anomalous phenomena , 2000 .

[41]  Andrei Khrennikov,et al.  Hertz’s Viewpoint on Quantum Theory , 2018, Activitas Nervosa Superior.

[42]  A. Wichert,et al.  Quantum Probabilistic Models Revisited: The Case of Disjunction Effects in Cognition , 2016, Front. Phys..

[43]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[44]  Jennifer S Trueblood,et al.  A quantum theoretical explanation for probability judgment errors. , 2011, Psychological review.

[45]  Fabio Bagarello,et al.  Quantum Dynamics for Classical Systems: With Applications of the Number Operator , 2012 .

[46]  A. L.,et al.  The Principles of Mechanics presented in a New Form , 1900, Nature.

[47]  Ehtibar N. Dzhafarov,et al.  Contextuality-by-Default 2.0: Systems with Binary Random Variables , 2016, QI.

[48]  Ehtibar N. Dzhafarov,et al.  Probabilistic Contextuality in EPR/Bohm-type Systems with Signaling Allowed , 2014, 1406.0243.

[49]  Andrei Khrennikov,et al.  Quantum(-Like) Decision Making: On Validity of the Aumann Theorem , 2014, QI.

[50]  Ehtibar N. Dzhafarov,et al.  Contextuality in canonical systems of random variables , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[51]  Richard Phillips Feynman,et al.  The Concept of Probability in Quantum Mechanics , 1951 .

[52]  Jörn Beyer,et al.  A significant-loophole-free test of Bell's theorem with entangled photons , 2017, Security + Defence.

[53]  Yoshiharu Tanaka,et al.  Quantum-like model of brain's functioning: decision making from decoherence. , 2011, Journal of theoretical biology.

[54]  Polina Khrennikova Modeling behavior of decision makers with the aid of algebra of qubit creation–annihilation operators , 2017 .

[55]  Matt Jones,et al.  On contextuality in behavioural data , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[56]  George Boole,et al.  An Investigation of the Laws of Thought: Frontmatter , 2009 .

[57]  Emmanuel M. Pothos,et al.  Quantum like modeling of decision making: Quantifying uncertainty with the aid of Heisenberg–Robertson inequality , 2018, Journal of Mathematical Psychology.

[58]  Emmanuel Haven,et al.  Quantum mechanics and violations of the sure-thing principle: The use of probability interference and other concepts , 2009 .

[59]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[60]  Jan-AAke Larsson,et al.  Contextuality in Three Types of Quantum-Mechanical Systems , 2014, 1411.2244.

[61]  J. Busemeyer,et al.  Quantum cognition: a new theoretical approach to psychology , 2015, Trends in Cognitive Sciences.

[62]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[63]  Emmanuel Haven,et al.  The Palgrave handbook of quantum models in social science : Applications and grand challenges , 2017 .

[64]  Jennifer Trueblood,et al.  A Quantum Probability Account of Order Effects in Inference , 2011, Cogn. Sci..

[65]  Andrei Khrennikov,et al.  Classical versus quantum probability: Comments on the paper “On universality of classical probability with contextually labeled random variables” by E. Dzhafarov and M. Kon , 2018, Journal of Mathematical Psychology.

[66]  A. Fine Hidden Variables, Joint Probability, and the Bell Inequalities , 1982 .

[67]  Andrei Khrennikov,et al.  On Quantum-Like Probabilistic Structure of Mental Information , 2004, Open Syst. Inf. Dyn..

[68]  Andrei Khrennikov,et al.  Quantum epistemology from subquantum ontology: quantum mechanics from theory of classical random fields , 2016, 1605.05907.

[69]  A Formula of Total Probability with the Interference Term and the Hilbert Space Representation of the Contextual Kolmogorovian Model , 2006, math/0609197.

[70]  Yoshiharu Tanaka,et al.  Quantum Adaptivity in Biology: From Genetics to Cognition , 2015, Springer Netherlands.

[71]  Andrei Khrennikov,et al.  CHSH Inequality: Quantum Probabilities as Classical Conditional Probabilities , 2014, 1406.4886.

[72]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[73]  Ludwig Boltzmann Über die Frage nach der objektiven Existenz der Vorgänge in der unbelebten Natur , 1979 .

[74]  Jerome R. Busemeyer,et al.  Quantum Models of Cognition and Decision , 2012 .

[75]  Andrei Khrennikov,et al.  Contextual Approach to Quantum Formalism , 2009 .

[76]  Andrei Khrennikov,et al.  Quantum probability updating from zero priors (by-passing Cromwell’s rule) , 2017, 1705.08128.

[77]  Ehtibar N. Dzhafarov,et al.  Conversations on Contextuality , 2015 .

[78]  Andrei Khrennikov,et al.  Single, Complete, Probability Spaces Consistent With EPR‐Bohm‐Bell Experimental Data , 2009 .

[79]  Kirsty Kitto,et al.  Is there something quantum-like about the human mental lexicon? , 2009 .

[80]  J. Busemeyer,et al.  Reintroducing the Concept of Complementarity into Psychology , 2015, Front. Psychol..

[81]  Emmanuel Haven,et al.  Quantum Methods In Social Science: A First Course , 2017 .

[82]  Ehtibar N. Dzhafarov,et al.  Embedding Quantum into Classical: Contextualization vs Conditionalization , 2013, PloS one.

[83]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[84]  A. Khrennikov,et al.  Quantum Social Science , 2013 .

[85]  A statistical analysis of the two-slit experiment: Or some remarks on quantum probability , 1993 .

[86]  Ehtibar N. Dzhafarov,et al.  Proof of a Conjecture on Contextuality in Cyclic Systems with Binary Variables , 2015, 1503.02181.

[87]  H. Thorisson Coupling, stationarity, and regeneration , 2000 .

[88]  Quantum measurements and contextuality , 2019, Philosophical Transactions of the Royal Society A.

[89]  Emmanuel M Pothos,et al.  Challenging the classical notion of time in cognition: a quantum perspective , 2014, Proceedings of the Royal Society B: Biological Sciences.

[90]  Jerome R Busemeyer,et al.  Can quantum probability provide a new direction for cognitive modeling? , 2013, The Behavioral and brain sciences.

[91]  Arkady Plotnitsky,et al.  Niels Bohr and Complementarity: An Introduction , 2012 .

[92]  Andrei Khrennikov,et al.  Nonlocality as well as rejection of realism are only sufficient (but non-necessary!) conditions for violation of Bell's inequality , 2009, Inf. Sci..

[93]  Diederik Aerts,et al.  Applications of Quantum Statistics in Psychological Studies of Decision Processes , 1995 .

[94]  Guillaume Adenier,et al.  Test of the no‐signaling principle in the Hensen loophole‐free CHSH experiment , 2016, 1606.00784.

[95]  Helly Grundbegriffe der Wahrscheinlichkeitsrechnung , 1936 .

[96]  A E Bostwick,et al.  THE THEORY OF PROBABILITIES. , 1896, Science.

[97]  S. BellJ,et al.  Einstein‐Podolsky‐Rosen逆理 量子力学での遠隔作用か , 1987 .