Asymmetric reduction of ketoxime O-alkyl ethers with chirally modified NaBH4–ZrCl4

Reducing agents prepared from sodium borohydride (NaBH4), zirconium tetrachloride (ZrCl4), and chiral amino alcohols have been successfully applied to the enantioselective reduction of oxime ethers. Optically active primary amines were obtained in high enantiomeric excess (⩽95% e.e.) with good chemical yield. The extent of asymmetric synthesis was dependent on the solvent, the temperature, the structure of chiral amino alcohol, and the proportions [NaBH4] : [ZrCl4] : [chiral amino alcohol] : [oxime ether].

[1]  S. Chemburkar,et al.  Acyclic stereoselection in the alkylation of chiral dipole-stabilized organolithiums: a self-immolative chirality transfer process for the synthesis of primary amines , 1989 .

[2]  K. Shimizu,et al.  Asymmetric reduction of ketoxime O-alkyl ethers with sodium borohydride–Lewis acid , 1989 .

[3]  D. Sherrington,et al.  Syntheses and Separations Using Functional Polymers , 1988 .

[4]  F. H. White,et al.  Chiral and achiral formamidines in synthesis. The first asymmetric route to (-)-yohimbine and an efficient total synthesis of (.+-.)-yohimbine , 1988 .

[5]  G. Ruggeri,et al.  Chiral polymer catalysts in preparative organic chemistry: a critical overview , 1988 .

[6]  J. Fréchet,et al.  Reactive polymers: design considerations, novel preparations and selected applications in organic chemistry , 1988 .

[7]  A. Meyers,et al.  Stereoselective reduction of C=X by a chiral 1,4-dihydropyridine (NADH-MIMIC) in a self-immolative process , 1988 .

[8]  Koichi Ito,et al.  Reduction of Some Functional Groups with Zirconium Tetrachloride/Sodium Borohydride , 1989 .

[9]  Koichi Ito,et al.  Asymmetric reduction of acetophenone O-methyloxime with the reagent prepared from borane and polymer-supported (S)-(−)-2-amino-3-(4-hydroxyphenyl)-1,1-diphenylpropan-1-ol , 1987 .

[10]  S. Denmark,et al.  Organocerium additions to SAMP-hydrazones: general synthesis of chiral amines , 1987 .

[11]  Koichi Ito,et al.  Catalytic Behavior of Optically Active Amino Alcohol–Borane Complex in the Enantioselective Reduction of Acetophenone Oxime O-Alkyl Ethers , 1987 .

[12]  T. E. Cole,et al.  Chiral synthesis via organoboranes. 8. Synthetic utility of boronic esters of essentially 100% optical purity. Synthesis of primary amines of very high enantiomeric purities , 1986 .

[13]  M. Shamma,et al.  Simple Isoquinoline Alkaloids , 1986 .

[14]  H. Brunner,et al.  Asymmetric catalysis. 29. Optically active primary amines by enantioselective catalytic hydrosilylation of ketoximes , 1986 .

[15]  S. Danishefsky,et al.  Total synthesis of quinocarcinol methyl ester , 1985 .

[16]  M. Nakano,et al.  Asymmetric synthesis using chirally modified borohydrides. Part 3. Enantioselective reduction of ketones and oxime ethers with reagents prepared from borane and chiral amino alcohols , 1985 .

[17]  H. Haubenstock Asymmetric Reductions with Chiral Complex Aluminum Hydrides and Tricoordinate Aluminum Reagents , 2007 .

[18]  A. R. Tatchell,et al.  Asymmetric reduction of Schiff's bases with lithium aluminium hydride-monosaccharide complexes to give optically active secondary amines. , 1984 .

[19]  A. R. Tatchell,et al.  Asymmetric syntheses. Part 11. Reduction of ketones and related ketone oximes with lithium aluminium hydride–3-O-cyclohexylmethyl-1,2-O-cyclohexylidene-α-D-glucofuranose complex to give optically active alcohols and amines , 1984 .

[20]  A. Hirao,et al.  Asymmetric synthesis using chirally modified borohydrides. Part 1. Enantioselective reduction of aromatic ketones with the reagent prepared from borane and (S)-valinol , 1983 .

[21]  M. Midland 2 – Reductions with Chiral Boron Reagents , 1983 .

[22]  B. Ganem,et al.  Mechanism of sodium borohydride-cobaltous chloride reductions , 1982 .

[23]  Hiroshi Takahashi,et al.  Asymmetric α-Substituted Phenethylamines. I. Synthesis of Optically Pure 1-Aryl-N-(2'-hydroxy-1'-isopropylethyl)-2-phenylethylamines , 1982 .

[24]  E. Wang,et al.  A berbine alkaloid, lienkonine from Corydalis ochotensis , 1982 .

[25]  M. Ohwa,et al.  Asymmetric Reduction of Aromatic Ketones with Reagents Prepared from NaBH4 and ZnCl2 in the Presence of 1,2 : 5,6-Di-O-isopropylidene-α-D-glucofuranose , 1981 .

[26]  E. Sugino,et al.  Reduction of Some Functional Groups with Titanium(IV) Chloride/Sodium Borohydride , 1980 .

[27]  A. Hirao,et al.  Asymmetric reduction of prochiral aromatic ketones with reagents prepared from sodium borohydride and Lewis acids in the presence of 1,2:5,6-di-O-iso-propylidene-?-D-glucofuranose , 1979 .

[28]  M. Ihara,et al.  Structural Elucidation of Two New Spirobenzylisoquinoline Alkaloids, Yenhusomine and Yenhusomidine , 1975 .

[29]  A. R. Tatchell,et al.  Asymmetric syntheses. Part IX. Reduction of ketone oximes and their O-substituted derivatives with the lithium aluminium hydride–3-O-benzyl-1,2-O-cyclohexylidene-α-D-glucofuranose complex to give optically active amines , 1974 .

[30]  D. Chasar Quantitative reduction of sulfoxides , 1971 .

[31]  M. F. Grundon,et al.  Asymmetric reduction of imines with lithium butyl(hydro)dipinan-3α-yl-borate and related reagents , 1971 .

[32]  C. Brown Catalytic hydrogenation. V. Reaction of sodium borohydride with aqueous nickel salts. P-1 nickel boride, a convenient, highly active nickel hydrogenation catalyst , 1970 .

[33]  G. J. Karabatsos,et al.  Structural studies by nuclear magnetic resonance—XI: Conformations and configurations of oxime o-methyl ethers , 1967 .

[34]  C. Ganellin,et al.  Molecular Asymmetry of Olefins. I. Resolution of trans-Cyclooctene1-3 , 1963 .