Mutual information in classical spin models

The total many-body correlations present in finite temperature classical spin systems are studied using the concept of mutual information. As opposed to zero-temperature quantum phase transitions, the total correlations are not maximal at the phase transition, but reach a maximum in the high-temperature paramagnetic phase. The Shannon mutual information and the Renyi mutual information in both Ising and Potts models in two dimensions are calculated numerically by combining matrix product state algorithms and Monte Carlo sampling techniques.

[1]  M. Fisher On the Dimer Solution of Planar Ising Models , 1966 .

[2]  M. Suzuki,et al.  Solution of Potts Model for Phase Transition , 1967 .

[3]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[4]  J. Tobochnik Properties of the q -state clock model for q = 4 , 5 , and 6 , 1982 .

[5]  J. Tobochnik Erratum: Properties of the q-state clock model for q=4, 5, and 6 , 1983 .

[6]  Landau,et al.  Critical behavior of the six-state clock model in two dimensions. , 1986, Physical review. B, Condensed matter.

[7]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[8]  Density Matrix Renormalization Group Method for 2D Classical Models , 1995, cond-mat/9508111.

[9]  T. Nishino,et al.  Product Wave Function Renormalization Group , 1995 .

[10]  Matthias Troyer,et al.  Parallel Object Oriented Monte Carlo Simulations , 1998, ISCOPE.

[11]  J. van Leeuwen,et al.  Computing in Object-Oriented Parallel Environments , 1999, Lecture Notes in Computer Science.

[12]  G. Vidal,et al.  Entanglement in quantum critical phenomena. , 2002, Physical review letters.

[13]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[14]  V. Korepin,et al.  Entanglement in the XY spin chain , 2004 .

[15]  J. Latorre,et al.  Entanglement entropy in the Lipkin-Meshkov-Glick model (4 pages) , 2004, cond-mat/0409611.

[16]  J Eisert,et al.  Entropy, entanglement, and area: analytical results for harmonic lattice systems. , 2005, Physical review letters.

[17]  F. Verstraete,et al.  Matrix product states represent ground states faithfully , 2005, cond-mat/0505140.

[18]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[19]  S. Dusuel,et al.  Entanglement entropy in collective models , 2006 .

[20]  F. Verstraete,et al.  Criticality, the area law, and the computational power of projected entangled pair states. , 2006, Physical review letters.

[21]  John Preskill,et al.  Topological entanglement entropy. , 2005, Physical Review Letters.

[22]  A. Honecker,et al.  The ALPS project release 1.3: Open-source software for strongly correlated systems , 2007 .

[23]  M. Hastings,et al.  An area law for one-dimensional quantum systems , 2007, 0705.2024.

[24]  Matthew B Hastings,et al.  Area laws in quantum systems: mutual information and correlations. , 2007, Physical review letters.

[25]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[26]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[27]  Jean-Marie St'ephan,et al.  Shannon and entanglement entropies of one- and two-dimensional critical wave functions , 2009, 0906.1153.

[28]  F. Verstraete,et al.  Exploiting translational invariance in matrix product state simulations of spin chains with periodic boundary conditions , 2010, 1005.5195.

[29]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[30]  J. Eisert,et al.  Colloquium: Area laws for the entanglement entropy , 2010 .

[31]  Matthew B Hastings,et al.  Measuring Renyi entanglement entropy in quantum Monte Carlo simulations. , 2010, Physical review letters.

[32]  Matthew B. Hastings,et al.  Finite-size scaling of mutual information in Monte Carlo simulations: Application to the spin-1/2 XXZ model , 2010 .