PyAutoLens: Open-Source Strong Gravitational Lensing

1 Institute for Computational Cosmology, Stockton Rd, Durham DH1 3LE 2 Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China 3 National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012, China 4 Advanced Research Computing, Durham University, Durham DH1 3LE 5 Dipartimento di Fisica e Astronomia, Università degli Studi di Bologna, Via Berti Pichat 6/2, I-40127 Bologna, Italy 6 Lorentz Institute, Leiden University, Niels Bohrweg 2, Leiden, NL-2333 CA, The Netherlands 7 School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, UK DOI: 10.21105/joss.02825

[1]  C. McCully,et al.  A new hybrid framework to efficiently model lines of sight to gravitational lenses , 2013, 1401.0197.

[2]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[3]  Siu Kwan Lam,et al.  Numba: a LLVM-based Python JIT compiler , 2015, LLVM '15.

[4]  Jyh-Miin Lin,et al.  Python Non-Uniform Fast Fourier Transform (PyNUFFT): An Accelerated Non-Cartesian MRI Package on a Heterogeneous Platform (CPU/GPU) , 2018, J. Imaging.

[5]  Simon Dye,et al.  AutoLens: automated modeling of a strong lens’s light, mass, and source , 2017, 1708.07377.

[6]  Daniel Foreman-Mackey,et al.  corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..

[7]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[8]  Fred L. Drake,et al.  Python 3 Reference Manual , 2009 .

[9]  Jason J. Bramburger,et al.  Dark disk substructure and superfluid dark matter , 2019, Physics Letters B.

[10]  James. W. Nightingale,et al.  PyAutoFit: A Classy Probabilistic Programming Language for Model Composition and Fitting , 2021, J. Open Source Softw..

[11]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[12]  J. Kneib,et al.  NEW CONSTRAINTS ON THE FAINT END OF THE UV LUMINOSITY FUNCTION AT z ∼ 7–8 USING THE GRAVITATIONAL LENSING OF THE HUBBLE FRONTIER FIELDS CLUSTER A2744 , 2014, 1409.0512.

[13]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[14]  Cosmology,et al.  THE SL2S GALAXY-SCALE LENS SAMPLE. V. DARK MATTER HALOS AND STELLAR IMF OF MASSIVE EARLY-TYPE GALAXIES OUT TO REDSHIFT 0.8 , 2014, 1410.1881.

[15]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[16]  Benedikt Diemer,et al.  COLOSSUS: A Python Toolkit for Cosmology, Large-scale Structure, and Dark Matter Halos , 2017, The Astrophysical Journal Supplement Series.

[17]  S. Dye,et al.  Adaptive semi-linear inversion of strong gravitational lens imaging , 2014, 1412.7436.

[18]  S. Maddox,et al.  Herschel -ATLAS: deep HST /WFC3 imaging of strongly lensed submillimetre galaxies , 2013, 1311.5898.

[19]  J. Speagle dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.

[20]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[21]  Lester James V. Miranda,et al.  PySwarms: a research toolkit for Particle Swarm Optimization in Python , 2018, J. Open Source Softw..

[22]  Gilles Louppe,et al.  Likelihood-free MCMC with Amortized Approximate Likelihood Ratios , 2019 .

[23]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[24]  A. Bolton,et al.  THE STRUCTURE AND DYNAMICS OF MASSIVE EARLY-TYPE GALAXIES: ON HOMOLOGY, ISOTHERMALITY, AND ISOTROPY INSIDE ONE EFFECTIVE RADIUS , 2009, 0906.1349.

[25]  Matteo Ravasi,et al.  PyLops - A Linear-Operator Python Library for large scale optimization , 2019, ArXiv.

[26]  A. Bolton,et al.  THE BOSS EMISSION-LINE LENS SURVEY. II. INVESTIGATING MASS-DENSITY PROFILE EVOLUTION IN THE SLACS+BELLS STRONG GRAVITATIONAL LENS SAMPLE , 2012, 1201.2988.

[27]  R. Massey,et al.  Galaxy structure with strong gravitational lensing: decomposing the internal mass distribution of massive elliptical galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[28]  A. Bolton,et al.  Inference of the cold dark matter substructure mass function at z = 0.2 using strong gravitational lenses , 2014, 1405.3666.

[29]  Adam Amara,et al.  lenstronomy: Multi-purpose gravitational lens modelling software package , 2018, Physics of the Dark Universe.

[30]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[31]  M. Gurwell,et al.  The Herschel-ATLAS: Magnifications and physical sizes of 500-μm-selected strongly lensed galaxies , 2018, 1801.01831.

[32]  S. Maddox,et al.  Herschel-ATLAS: modelling the first strong gravitational lenses , 2013, 1311.5893.

[33]  T. Collett THE POPULATION OF GALAXY–GALAXY STRONG LENSES IN FORTHCOMING OPTICAL IMAGING SURVEYS , 2015, 1507.02657.

[34]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[35]  J. Kneib,et al.  Cosmological Constraints from Strong Gravitational Lensing in Clusters of Galaxies , 2010, Science.

[36]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[37]  J. Carlstrom,et al.  ALMA IMAGING AND GRAVITATIONAL LENS MODELS OF SOUTH POLE TELESCOPE—SELECTED DUSTY, STAR-FORMING GALAXIES AT HIGH REDSHIFTS , 2016, 1604.05723.

[38]  J. McKean,et al.  A novel approach to visibility-space modelling of interferometric gravitational lens observations at high angular resolution , 2020, 2005.03609.

[39]  U. Utah,et al.  Two-dimensional kinematics of SLACS lenses - IV. The complete VLT-VIMOS data set ⋆ , 2011, 1108.0577.

[40]  G. Meylan,et al.  H0LiCOW – I. H0 Lenses in COSMOGRAIL's wellspring: program overview , 2016, 1607.00017.