PyAutoLens: Open-Source Strong Gravitational Lensing
暂无分享,去创建一个
Shaun Cole | Carlos S. Frenk | Andrew Robertson | Nan Li | Mattia Negrello | Richard J. Massey | Richard G. Hayes | James W. Nightingale | Ashley Kelly | Aristeidis Amvrosiadis | Amy Etherington | Qiuhan He | XiaoYue Cao | Jonathan Frawley | Andrea Enia | David R. Harvey | Ran Li | R. Massey | S. Cole | C. Frenk | D. Harvey | M. Negrello | J. Nightingale | A. Robertson | Ran Li | Xiaoyue Cao | A. Amvrosiadis | Qiuhan He | A. Etherington | A. Enia | R. Hayes | Ashley J. Kelly | Nan Li | J. Frawley
[1] C. McCully,et al. A new hybrid framework to efficiently model lines of sight to gravitational lenses , 2013, 1401.0197.
[2] Prasanth H. Nair,et al. Astropy: A community Python package for astronomy , 2013, 1307.6212.
[3] Siu Kwan Lam,et al. Numba: a LLVM-based Python JIT compiler , 2015, LLVM '15.
[4] Jyh-Miin Lin,et al. Python Non-Uniform Fast Fourier Transform (PyNUFFT): An Accelerated Non-Cartesian MRI Package on a Heterogeneous Platform (CPU/GPU) , 2018, J. Imaging.
[5] Simon Dye,et al. AutoLens: automated modeling of a strong lens’s light, mass, and source , 2017, 1708.07377.
[6] Daniel Foreman-Mackey,et al. corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..
[7] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[8] Fred L. Drake,et al. Python 3 Reference Manual , 2009 .
[9] Jason J. Bramburger,et al. Dark disk substructure and superfluid dark matter , 2019, Physics Letters B.
[10] James. W. Nightingale,et al. PyAutoFit: A Classy Probabilistic Programming Language for Model Composition and Fitting , 2021, J. Open Source Softw..
[11] Gaël Varoquaux,et al. The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.
[12] J. Kneib,et al. NEW CONSTRAINTS ON THE FAINT END OF THE UV LUMINOSITY FUNCTION AT z ∼ 7–8 USING THE GRAVITATIONAL LENSING OF THE HUBBLE FRONTIER FIELDS CLUSTER A2744 , 2014, 1409.0512.
[13] Joel Nothman,et al. SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.
[14] Cosmology,et al. THE SL2S GALAXY-SCALE LENS SAMPLE. V. DARK MATTER HALOS AND STELLAR IMF OF MASSIVE EARLY-TYPE GALAXIES OUT TO REDSHIFT 0.8 , 2014, 1410.1881.
[15] Miguel de Val-Borro,et al. The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.
[16] Benedikt Diemer,et al. COLOSSUS: A Python Toolkit for Cosmology, Large-scale Structure, and Dark Matter Halos , 2017, The Astrophysical Journal Supplement Series.
[17] S. Dye,et al. Adaptive semi-linear inversion of strong gravitational lens imaging , 2014, 1412.7436.
[18] S. Maddox,et al. Herschel -ATLAS: deep HST /WFC3 imaging of strongly lensed submillimetre galaxies , 2013, 1311.5898.
[19] J. Speagle. dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.
[20] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[21] Lester James V. Miranda,et al. PySwarms: a research toolkit for Particle Swarm Optimization in Python , 2018, J. Open Source Softw..
[22] Gilles Louppe,et al. Likelihood-free MCMC with Amortized Approximate Likelihood Ratios , 2019 .
[23] Emmanuelle Gouillart,et al. scikit-image: image processing in Python , 2014, PeerJ.
[24] A. Bolton,et al. THE STRUCTURE AND DYNAMICS OF MASSIVE EARLY-TYPE GALAXIES: ON HOMOLOGY, ISOTHERMALITY, AND ISOTROPY INSIDE ONE EFFECTIVE RADIUS , 2009, 0906.1349.
[25] Matteo Ravasi,et al. PyLops - A Linear-Operator Python Library for large scale optimization , 2019, ArXiv.
[26] A. Bolton,et al. THE BOSS EMISSION-LINE LENS SURVEY. II. INVESTIGATING MASS-DENSITY PROFILE EVOLUTION IN THE SLACS+BELLS STRONG GRAVITATIONAL LENS SAMPLE , 2012, 1201.2988.
[27] R. Massey,et al. Galaxy structure with strong gravitational lensing: decomposing the internal mass distribution of massive elliptical galaxies , 2019, Monthly Notices of the Royal Astronomical Society.
[28] A. Bolton,et al. Inference of the cold dark matter substructure mass function at z = 0.2 using strong gravitational lenses , 2014, 1405.3666.
[29] Adam Amara,et al. lenstronomy: Multi-purpose gravitational lens modelling software package , 2018, Physics of the Dark Universe.
[30] F. Feroz,et al. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.
[31] M. Gurwell,et al. The Herschel-ATLAS: Magnifications and physical sizes of 500-μm-selected strongly lensed galaxies , 2018, 1801.01831.
[32] S. Maddox,et al. Herschel-ATLAS: modelling the first strong gravitational lenses , 2013, 1311.5893.
[33] T. Collett. THE POPULATION OF GALAXY–GALAXY STRONG LENSES IN FORTHCOMING OPTICAL IMAGING SURVEYS , 2015, 1507.02657.
[34] A. Merloni,et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.
[35] J. Kneib,et al. Cosmological Constraints from Strong Gravitational Lensing in Clusters of Galaxies , 2010, Science.
[36] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[37] J. Carlstrom,et al. ALMA IMAGING AND GRAVITATIONAL LENS MODELS OF SOUTH POLE TELESCOPE—SELECTED DUSTY, STAR-FORMING GALAXIES AT HIGH REDSHIFTS , 2016, 1604.05723.
[38] J. McKean,et al. A novel approach to visibility-space modelling of interferometric gravitational lens observations at high angular resolution , 2020, 2005.03609.
[39] U. Utah,et al. Two-dimensional kinematics of SLACS lenses - IV. The complete VLT-VIMOS data set ⋆ , 2011, 1108.0577.
[40] G. Meylan,et al. H0LiCOW – I. H0 Lenses in COSMOGRAIL's wellspring: program overview , 2016, 1607.00017.