Transcription and nucleotide excision repair--reflections, considerations and recent biochemical insights.

[1]  A. Bardwell,et al.  Yeast RAD3 protein binds directly to both SSL2 and SSL1 proteins: implications for the structure and function of transcription/repair factor b. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[2]  R. Kornberg,et al.  Transcription factor b (TFIIH) is required during nucleotide-excision repair in yeast , 1994, Nature.

[3]  A. Bardwell,et al.  Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair , 1993, Cell.

[4]  P. Sung,et al.  Human xeroderma pigmentosum group D gene encodes a DMA helicase , 1993, Nature.

[5]  A. Bardwell,et al.  Yeast DNA recombination and repair proteins Rad 1 and Radio constitute a complex in vivo mediated by localized hydrophobic domains , 1993, Molecular microbiology.

[6]  Xiaohua Wu,et al.  Nucleotide-excision repair of DNA in cell-free extracts of the yeast Saccharomyces cerevisiae. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[7]  H. Naegeli,et al.  The DNA helicase activities of Rad3 protein of Saccharomyces cerevisiae and helicase II of Escherichia coli are differentially inhibited by covalent and noncovalent DNA modifications. , 1993, The Journal of biological chemistry.

[8]  P. Chambon,et al.  DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. , 1993, Science.

[9]  A. Sancar,et al.  Molecular mechanism of transcription-repair coupling. , 1993, Science.

[10]  C. Downes,et al.  Fine tuning of DNA repair in transcribed genes: mechanisms, prevalence and consequences. , 1993, Bioessays.

[11]  P. Hanawalt,et al.  Stranded in an active gene , 1993, Current Biology.

[12]  L. Bardwell,et al.  Inhibition of Rad3 DNA helicase activity by DNA adducts and abasic sites: implications for the role of a DNA helicase in damage-specific incision of DNA. , 1993, Biochemistry.

[13]  D. Bootsma,et al.  The genetic defect in DNA repair deficiency syndromes. EACR--Mühlbock Memorial Lecture, 1993. , 1993, European journal of cancer.

[14]  R. Conaway,et al.  General initiation factors for RNA polymerase II. , 1993, Annual review of biochemistry.

[15]  J. Hoeijmakers,et al.  ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes , 1992, Cell.

[16]  T. Donahue,et al.  SSL1, a suppressor of a HIS4 5'-UTR stem-loop mutation, is essential for translation initiation and affects UV resistance in yeast. , 1992, Genes & development.

[17]  A. Sancar,et al.  (A)BC excinuclease: the Escherichia coli nucleotide excision repair enzyme , 1992, Molecular microbiology.

[18]  K. D. Gulyas,et al.  SSL2, a suppressor of a stem-loop mutation in the HIS4 leader encodes the yeast homolog of human ERCC-3 , 1992, Cell.

[19]  L. Bardwell,et al.  The DNA helicase and adenosine triphosphatase activities of yeast Rad3 protein are inhibited by DNA damage. A potential mechanism for damage-specific recognition. , 1992, The Journal of biological chemistry.

[20]  L. Mullenders,et al.  GENOMIC HETEROGENEITY OF UV-INDUCED REPAIR: RELATIONSHIP TO HIGHER-ORDER CHROMATIN STRUCTURE AND TRANSCRIPTIONAL ACTIVITY , 1992 .

[21]  M. Nance,et al.  Cockayne syndrome: review of 140 cases. , 1992, American journal of medical genetics.

[22]  A. Sancar,et al.  Escherichia coli mfd mutant deficient in "mutation frequency decline" lacks strand-specific repair: in vitro complementation with purified coupling factor. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[23]  V. Bohr,et al.  Gene specific DNA repair. , 1991, Carcinogenesis.

[24]  A. Sancar,et al.  Gene- and strand-specific repair in vitro: partial purification of a transcription-repair coupling factor. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[25]  P. Hanawalt,et al.  The genetic defect in the Chinese hamster ovary cell mutant UV61 permits moderate selective repair of cyclobutane pyrimidine dimers in an expressed gene. , 1991, Mutation research.

[26]  L. Mullenders,et al.  Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes , 1991, Molecular and cellular biology.

[27]  E. Friedberg,et al.  3 Cellular Responses to DNA Damage in Yeast , 1991 .

[28]  A. Sancar,et al.  Transcription preferentially inhibits nucleotide excision repair of the template DNA strand in vitro. , 1990, The Journal of biological chemistry.

[29]  J. Hoeijmakers,et al.  Molecular cloning of the human DNA excision repair gene ERCC-6 , 1990, Molecular and cellular biology.

[30]  A. Sancar,et al.  Structure and function of the (A)BC excinuclease of Escherichia coli. , 1990, Mutation research.

[31]  A. V. D. Eb,et al.  A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome , 1990, Cell.

[32]  B. V. Houten Nucleotide excision repair in Escherichia coli. , 1990 .

[33]  A. Sancar,et al.  大腸菌(A)BCエクシヌクレアーゼの構造と機能 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1990 .

[34]  P. Hanawalt,et al.  Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand , 1989, Nature.

[35]  P. Sung,et al.  Mutation of lysine‐48 to arginine in the yeast RAD3 protein abolishes its ATPase and DNA helicase activities but not the ability to bind ATP. , 1988, The EMBO journal.