Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis

Skoda et al. provide new insights into the collaboration between epigenetic regulator Ezh2 and a key hematopoietic tyrosine kinase in disease initiation and progression.

[1]  P. Campbell,et al.  Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes , 2015, Nature Communications.

[2]  Michael B. Stadler,et al.  QuasR: quantification and annotation of short reads in R , 2014, Bioinform..

[3]  S. Orkin,et al.  Myeloproliferative neoplasms can be initiated from a single hematopoietic stem cell expressing JAK2-V617F , 2014, The Journal of experimental medicine.

[4]  Christian Beisel,et al.  Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. , 2014, Blood.

[5]  S. Orkin,et al.  Polycomb repressive complex 2 regulates normal hematopoietic stem cell function in a developmental-stage-specific manner. , 2014, Cell stem cell.

[6]  J. D. Fitzpatrick,et al.  Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. , 2013, The New England journal of medicine.

[7]  G. Superti-Furga,et al.  Somatic mutations of calreticulin in myeloproliferative neoplasms. , 2013, The New England journal of medicine.

[8]  David G. Kent,et al.  The Lin28b–let-7–Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells , 2013, Nature Cell Biology.

[9]  M. Murakami,et al.  Differential effects of hydroxyurea and INC424 on mutant allele burden and myeloproliferative phenotype in a JAK2-V617F polycythemia vera mouse model. , 2013, Blood.

[10]  S. Armstrong,et al.  Polycomb repressive complex 2 is required for MLL-AF9 leukemia , 2012, Proceedings of the National Academy of Sciences.

[11]  Davis J. McCarthy,et al.  Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation , 2012, Nucleic acids research.

[12]  S. González,et al.  Ectopic expression of the histone methyltransferase Ezh2 in haematopoietic stem cells causes myeloproliferative disease , 2012, Nature Communications.

[13]  A. Iwama,et al.  Dependency on the polycomb gene Ezh2 distinguishes fetal from adult hematopoietic stem cells. , 2011, Blood.

[14]  Dimitrios Iliopoulos,et al.  Lin28A and Lin28B Inhibit let-7 MicroRNA Biogenesis by Distinct Mechanisms , 2011, Cell.

[15]  A. Iwama,et al.  Lethal myelofibrosis induced by Bmi1-deficient hematopoietic cells unveils a tumor suppressor function of the polycomb group genes , 2011, The Journal of experimental medicine.

[16]  P. Guglielmelli,et al.  EZH2 mutational status predicts poor survival in myelofibrosis. , 2011, Blood.

[17]  W. Vainchenker,et al.  New mutations and pathogenesis of myeloproliferative neoplasms. , 2011, Blood.

[18]  D. Neuberg,et al.  Clinical effect of point mutations in myelodysplastic syndromes. , 2011, The New England journal of medicine.

[19]  D. Kent,et al.  Mouse models of myeloproliferative neoplasms: JAK of all grades , 2011, Disease Models & Mechanisms.

[20]  Ryan D. Morin,et al.  Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. , 2011, Blood.

[21]  D. Reinberg,et al.  The Polycomb complex PRC2 and its mark in life , 2011, Nature.

[22]  Guy Sauvageau,et al.  Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. , 2010, Cell stem cell.

[23]  Belinda Phipson,et al.  Opposing roles of polycomb repressive complexes in hematopoietic stem and progenitor cells. , 2010, Blood.

[24]  H. Drexler,et al.  Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders , 2010, Nature Genetics.

[25]  Renaud Gaujoux,et al.  A flexible R package for nonnegative matrix factorization , 2010, BMC Bioinformatics.

[26]  M. Vidal,et al.  Polycomb Limits the Neurogenic Competence of Neural Precursor Cells to Promote Astrogenic Fate Transition , 2009, Neuron.

[27]  Juergen Thiele,et al.  The 2008 World Health Organization classification system for myeloproliferative neoplasms , 2009, Cancer.

[28]  C. Bloomfield,et al.  The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. , 2009, Blood.

[29]  John T. Powers,et al.  Lin28 Enhances Tumorigenesis and is Associated With Advanced Human Malignancies , 2009, Nature Genetics.

[30]  G. Daley,et al.  Selective Blockade of MicroRNA Processing by Lin28 , 2008, Science.

[31]  R. Tiedt,et al.  Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. , 2007, Blood.

[32]  D. Gilliland,et al.  MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. , 2006, Blood.

[33]  Sandra A. Moore,et al.  MPLW515L Is a Novel Somatic Activating Mutation in Myelofibrosis with Myeloid Metaplasia , 2006, PLoS medicine.

[34]  L. Bystrykh,et al.  The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. , 2006, Blood.

[35]  Mario Cazzola,et al.  A gain-of-function mutation of JAK2 in myeloproliferative disorders. , 2005, The New England journal of medicine.

[36]  Stefan N. Constantinescu,et al.  A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera , 2005, Nature.

[37]  Sandra A. Moore,et al.  Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. , 2005, Cancer cell.

[38]  P. Campbell,et al.  Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders , 2005, The Lancet.

[39]  Mark A. Hall,et al.  In vivo fate-tracing studies using the Scl stem cell enhancer: embryonic hematopoietic stem cells significantly contribute to adult hematopoiesis. , 2004, Blood.

[40]  F. Bauters,et al.  Dysregulation and overexpression of HMGA2 in myelofibrosis with myeloid metaplasia , 2004, Genes, chromosomes & cancer.

[41]  P. Marrack,et al.  Observation of antigen-dependent CD8+ T-cell/ dendritic cell interactions in vivo. , 2001, Cellular immunology.

[42]  G. Barosi,et al.  Diagnostic and clinical relevance of the number of circulating CD34(+) cells in myelofibrosis with myeloid metaplasia. , 2001, Blood.

[43]  M Aguet,et al.  Inducible gene targeting in mice , 1995, Science.

[44]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[45]  Ryan D. Morin,et al.  Somatic mutations at EZH 2 Y 641 act dominantly through a mechanism of selectively altered PRC 2 catalytic activity , to increase H 3 K 27 trimethylation , 2011 .

[46]  M. Surani,et al.  The Polycomb-Group Gene Ezh2 Is Required for Early Mouse Development , 2001 .

[47]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .