HYbriD Resonant Acoustics (HYDRA)

The existence of what is termed here as a surface-reflected bulk wave is unraveled and elucidated, and it is shown, quite counterintuitively, that it is possible to obtain an order-of-magnitude improvement in microfluidic manipulation efficiency, and, in particular, nebulization, through a unique combination of surface and bulk waves without increasing complexity or cost.

[1]  J. Friend,et al.  Effective pulmonary delivery of an aerosolized plasmid DNA vaccine via surface acoustic wave nebulization , 2014, Respiratory Research.

[2]  J. Friend,et al.  Substrate dependent drop deformation and wetting under high frequency vibration , 2011 .

[3]  J. Friend,et al.  Planar microfluidic drop splitting and merging. , 2015, Lab on a chip.

[4]  Richard M. White,et al.  DIRECT PIEZOELECTRIC COUPLING TO SURFACE ELASTIC WAVES , 1965 .

[5]  A. Gautesen Scattering of a Rayleigh wave by an elastic wedge , 1987 .

[6]  O. Matar,et al.  Droplet displacements and oscillations induced by ultrasonic surface acoustic waves: a quantitative study. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Gerhard Lindner,et al.  Investigations of droplet movement excited by Lamb waves on a non-piezoelectric substrate , 2013 .

[8]  Achim Wixforth,et al.  Microfluidic mixing via acoustically driven chaotic advection. , 2008, Physical review letters.

[9]  Julien Reboud,et al.  Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies , 2012, Proceedings of the National Academy of Sciences.

[10]  S. Joshi,et al.  Propagation of a quasi-shear horizontal acoustic wave in Z-X lithium niobate plates [and conductivity sensor application] , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[11]  Hyung Jin Sung,et al.  Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. , 2015, Lab on a chip.

[12]  M. Cecchini,et al.  Nanoliter-Droplet Acoustic Streaming via Ultra High Frequency Surface Acoustic Waves , 2014, Advanced materials.

[13]  J. Friend,et al.  Simple, low cost MHz-order acoustomicrofluidics using aluminium foil electrodes. , 2014, Lab on a chip.

[14]  Carl Eckart,et al.  The Thermodynamics of Irreversible Processes. IV. The Theory of Elasticity and Anelasticity , 1948 .

[15]  Thomas Laurell,et al.  Chip integrated strategies for acoustic separation and manipulation of cells and particles. , 2007, Chemical Society reviews.

[16]  R. D. Gregory,et al.  The reflection of a symmetric Rayleigh-Lamb wave at the fixed or free edge of a plate , 1983 .

[17]  J. Friend,et al.  Poloidal flow and toroidal particle ring formation in a sessile drop driven by megahertz order vibration. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[18]  I-Kao Chiang,et al.  Surface Acoustic Wave Driven Light Shutters Using Polymer‐Dispersed Liquid Crystals , 2011, Advanced materials.

[19]  David R Goodlett,et al.  Surface acoustic wave nebulization of peptides as a microfluidic interface for mass spectrometry. , 2010, Analytical chemistry.

[20]  Yi Zhang,et al.  Phononic Crystals for Shaping Fluids , 2011, Advanced materials.

[21]  Peng Li,et al.  Surface acoustic wave microfluidics. , 2013, Lab on a chip.

[22]  E. Salzmann,et al.  ELASTIC SURFACE WAVES IN QUARTZ AT 316 MHz , 1967 .

[23]  James Friend,et al.  Surface Acoustic Wave Microfluidics , 2014 .

[24]  J. Reboud,et al.  Rare-Cell Enrichment by a Rapid, Label-Free, Ultrasonic Isopycnic Technique for Medical Diagnostics** , 2014, Angewandte Chemie.

[25]  Hyung Jin Sung,et al.  Adjustable, rapidly switching microfluidic gradient generation using focused travelling surface acoustic waves , 2014 .

[26]  F. Brochard-Wyart,et al.  Triplon modes of puddles. , 2005, Physical review letters.

[27]  Leslie Y Yeo,et al.  Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization. , 2009, Lab on a chip.

[28]  Jin Ho Jung,et al.  Microchannel anechoic corner for size-selective separation and medium exchange via traveling surface acoustic waves. , 2015, Analytical chemistry.

[29]  J. Friend,et al.  Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics , 2011 .

[30]  Leslie Y Yeo,et al.  Atomization off thin water films generated by high-frequency substrate wave vibrations. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  K. Shibayama,et al.  Optimum cut for rotated Y-cut LiNbO3crystal used as the substrate of acoustic-surface-wave filters , 1976, Proceedings of the IEEE.

[32]  A Alexander-Katz,et al.  Shear-induced unfolding triggers adhesion of von Willebrand factor fibers , 2007, Proceedings of the National Academy of Sciences.

[33]  J. Eggers,et al.  Motion of a drop driven by substrate vibrations , 2009 .

[34]  I-Kao Chiang,et al.  On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves , 2012, Proceedings of the National Academy of Sciences.

[35]  A Winkler,et al.  SAW-based fluid atomization using mass-producible chip devices. , 2015, Lab on a chip.

[36]  Leslie Y Yeo,et al.  Unique fingering instabilities and soliton-like wave propagation in thin acoustowetting films , 2012, Nature Communications.

[37]  Virgilio Mattoli,et al.  Rapid and Controllable Digital Microfluidic Heating by Surface Acoustic Waves , 2015 .

[38]  E. Soczkiewicz THE PENETRATION DEPTH OF THE RAYLEIGH SURFACE WAVES , 1997 .

[39]  B. Onfelt,et al.  Ultrasonic manipulation of single cells. , 2012, Methods in molecular biology.

[40]  Leslie Y Yeo,et al.  Enabling practical surface acoustic wave nebulizer drug delivery via amplitude modulation. , 2014, Lab on a chip.