NEARLY CLOAKING THE FULL MAXWELL EQUATIONS

The approximate cloaking is investigated for time-harmonic Maxwell's equations via the approach of transformation optics. The problem is reduced to certain boundary effect estimates due to an inho- mogeneous electromagnetic inclusion with an asymptotically small sup- port but an arbitrary content enclosed by a thin high-conducting layer. Sharp estimates are established in terms of the asymptotic parameter, which are independent of the material tensors of the small electromag- netic inclusion. The result implies that the 'blow-up-a-small-region' con- struction via the transformation optics approach yields a near-cloak for the electromagnetic waves. A novelty lies in the fact that the geometry of the cloaking construction of this work can be very general. Moreover, by incorporating the conducting layer developed in the present paper right between the cloaked region and the cloaking region, arbitrary electro- magnetic contents can be nearly cloaked. Our mathematical technique extends the general one developed in (30) for nearly cloaking scalar op- tics. In order to investigate the approximate electromagnetic cloaking for general geometries with arbitrary cloaked contents, new techniques and analysis tools must be developed for this more challenging vector optics case.

[1]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[2]  Hongyu Liu,et al.  Virtual reshaping and invisibility in obstacle scattering , 2008, 0811.1308.

[3]  Martin Costabel,et al.  On the Kleinman-Martin Integral Equation Method for Electromagnetic Scattering by a Dielectric Body , 2009, SIAM J. Appl. Math..

[4]  Habib Ammari,et al.  Communications in Mathematical Physics Enhancement of Near-Cloaking . Part II : The Helmholtz Equation , 2013 .

[5]  Ilker Kocyigit,et al.  Regular scattering patterns from near-cloaking devices and their implications for invisibility cloaking , 2013 .

[6]  Habib Ammari,et al.  Low-Frequency Electromagnetic Scattering , 2000, SIAM J. Math. Anal..

[7]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[8]  Petri Ola,et al.  Electromagnetic Inverse Problems and Generalized Sommerfeld Potentials , 1996, SIAM J. Appl. Math..

[9]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[10]  Xavier Antoine,et al.  Far Field Modeling of Electromagnetic Time Reversal and Application to Selective Focusing on Small Scatterers , 2008, SIAM J. Appl. Math..

[11]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[12]  L. Hörmander The Analysis of Linear Partial Differential Operators III , 2007 .

[13]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[14]  Habib Ammari,et al.  Spectral Theory of a Neumann–Poincaré-Type Operator and Analysis of Cloaking Due to Anomalous Localized Resonance , 2011, 1212.5066.

[15]  Gunther Uhlmann,et al.  Visibility and invisibility , 2009 .

[16]  G. Uhlmann,et al.  Improvement of cylindrical cloaking with the SHS lining. , 2007, Optics express.

[17]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[18]  L. B. Slichter An Inverse Boundary Value Problem in Electrodynamics , 1933 .

[19]  Hongyu Liu,et al.  Enhanced near-cloak by FSH lining , 2011 .

[20]  Matti Lassas,et al.  On nonuniqueness for Calderón’s inverse problem , 2003 .

[21]  H. Ammari,et al.  Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations , 2001 .

[22]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[23]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[24]  Matti Lassas,et al.  Invisibility and Inverse Problems , 2008, 0810.0263.

[25]  J. Conoir,et al.  Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles , 2006 .

[26]  Ting Zhou,et al.  On Approximate Electromagnetic Cloaking by Transformation Media , 2010, SIAM J. Appl. Math..

[27]  M. Vogelius,et al.  Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogen , 2000 .

[28]  M. Qiu,et al.  Invisibility Cloaking by Coordinate Transformation , 2009 .

[29]  D. Griffel,et al.  Initial Boundary Value Problems in Mathematical Physics , 1986 .

[30]  G. Uhlmann,et al.  Full-Wave Invisibility of Active Devices at All Frequencies , 2006, math/0611185.

[31]  A. Norris Acoustic cloaking theory , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  R. Kohn,et al.  Cloaking via change of variables in electric impedance tomography , 2008 .

[33]  Robert V. Kohn,et al.  Cloaking via change of variables for the Helmholtz equation , 2010 .

[34]  G. Uhlmann,et al.  Isotropic transformation optics: approximate acoustic and quantum cloaking , 2008, 0806.0085.

[35]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[36]  H. Ammari,et al.  Reconstruction of Small Inhomogeneities from Boundary Measurements , 2005 .

[37]  Habib Ammari,et al.  Enhancement of Near Cloaking Using Generalized Polarization Tensors Vanishing Structures. Part I: The Conductivity Problem , 2011, Communications in Mathematical Physics.

[38]  Jingzhi Li,et al.  Enhanced approximate cloaking by SH and FSH lining , 2012 .

[39]  R. Leis,et al.  Initial Boundary Value Problems in Mathematical Physics , 1986 .

[40]  Matti Lassas,et al.  Anisotropic conductivities that cannot be detected by EIT. , 2003, Physiological measurement.

[41]  M. Qiu,et al.  Ideal cylindrical cloak: perfect but sensitive to tiny perturbations. , 2007, Physical review letters.

[42]  Huanyang Chen,et al.  Acoustic cloaking and transformation acoustics , 2010 .

[43]  Matti Lassas,et al.  Cloaking Devices, Electromagnetic Wormholes, and Transformation Optics , 2009, SIAM Rev..

[44]  George Dassios,et al.  Low Frequency Scattering , 2000 .

[45]  Josselin Garnier,et al.  Enhancement of near-cloaking. Part III: Numerical simulations, statistical stability, and related questions , 2011 .