Equilibrium β-limits dependence on bootstrap current in classical stellarators

While it is important to design stellarators with high magneto-hydrodynamic (MHD) stability $\beta$-limit, it is also crucial to ensure that good magnetic surfaces exist in a large range of $\beta$ values. As $\beta$ increases, pressure-driven currents perturb the vacuum magnetic field and often lead to the emergence of magnetic field line chaos, which can worsen the confinement and is the cause of another kind of $\beta$-limit, the so-called equilibrium $\beta$-limit. In this paper, we explore numerically the dependence of the equilibrium $\beta$-limit on the bootstrap current strength using the Stepped Pressure Equilibrium Code (SPEC). We develop a diagnostic to determine whether or not magnetic islands are expected to participate significantly to radial transport, and we build an analytical model to predict the expected equilibrium $\beta$-limit, which recovers the main features of the numerical results. This research opens the possibility to include additional targets in stellarator optimization functions, provides additional understanding on the existence of magnetic surfaces at large $\beta$, and is a step forward in the understanding of the equilibrium $\beta$-limit.

[1]  M. Landreman,et al.  Optimization of quasi-symmetric stellarators with self-consistent bootstrap current and energetic particle confinement , 2022, Physics of Plasmas.

[2]  S. Hudson,et al.  Nature of ideal MHD instabilities as described by multi-region relaxed MHD , 2022, Plasma Physics and Controlled Fusion.

[3]  M. Landreman,et al.  Stellarator optimization for nested magnetic surfaces at finite β and toroidal current , 2021, Physics of Plasmas.

[4]  S. Hudson,et al.  Numerical study of δ-function current sheets arising from resonant magnetic perturbations , 2021, Physics of Plasmas.

[5]  S. Hudson,et al.  Heat conduction in an irregular magnetic field. Part 2. Heat transport as a measure of the effective non-integrable volume , 2021, Journal of Plasma Physics.

[6]  M. Landreman,et al.  SIMSOPT: A flexible framework for stellarator optimization , 2021, J. Open Source Softw..

[7]  S. Hudson,et al.  On the non-existence of stepped-pressure equilibria far from symmetry , 2021, Plasma Physics and Controlled Fusion.

[8]  A. Kumar,et al.  Computation of multi-region, relaxed magnetohydrodynamic equilibria with prescribed toroidal current profile , 2021, Journal of Plasma Physics.

[9]  M. Landreman,et al.  Stellarator optimization for good magnetic surfaces at the same time as quasisymmetry , 2021, Physics of Plasmas.

[10]  A. M. Wright,et al.  Computation of linear MHD instabilities with the multi-region relaxed MHD energy principle , 2021 .

[11]  S. Hudson,et al.  Numerical approach to δ-function current sheets arising from resonant magnetic perturbations , 2021 .

[12]  S. Hudson,et al.  Coordinate parameterisation and spectral method optimisation for Beltrami field solver in stellarator geometry , 2020, Plasma Physics and Controlled Fusion.

[13]  K. Watanabe,et al.  Theoretical studies of equilibrium beta limit in LHD plasmas , 2020 .

[14]  S. Hudson,et al.  Direct prediction of nonlinear tearing mode saturation using a variational principle , 2020 .

[15]  S. Hudson,et al.  Free-boundary MRxMHD equilibrium calculations using the stepped-pressure equilibrium code , 2020, Plasma Physics and Controlled Fusion.

[16]  J. Anderson,et al.  Stepped pressure equilibrium with relaxed flow and applications in reversed-field pinch plasmas , 2020, Plasma Physics and Controlled Fusion.

[17]  M. Rosenbluth,et al.  Electron Heat Transport in a Tokamak with Destroyed Magnetic Surfaces , 1978, Hamiltonian Dynamical Systems.

[18]  Michael J. Cole,et al.  Overview of first Wendelstein 7-X high-performance operation , 2019, Nuclear Fusion.

[19]  S. Hudson,et al.  Multi-region relaxed magnetohydrodynamic stability of a current sheet , 2019, Physics of Plasmas.

[20]  S. Hudson,et al.  Equilibrium 𝛽-limits in classical stellarators , 2017, Journal of Plasma Physics.

[21]  Nengchao Wang,et al.  Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100,000 , 2016, Nature Communications.

[22]  S. Hudson,et al.  Verification of the SPEC code in stellarator geometries , 2016 .

[23]  S. Hudson,et al.  Pressure-driven amplification and penetration of resonant magnetic perturbations , 2016 .

[24]  S. Hudson,et al.  Existence of three-dimensional ideal-magnetohydrodynamic equilibria with current sheets , 2015 .

[25]  S. Hudson,et al.  Magnetic islands and singular currents at rational surfaces in three-dimensional magnetohydrodynamic equilibria , 2015 .

[26]  Per Helander,et al.  Theory of plasma confinement in non-axisymmetric magnetic fields , 2014, Reports on progress in physics. Physical Society.

[27]  S. Hudson,et al.  Multi-region relaxed magnetohydrodynamics with anisotropy and flow , 2014, 1405.0061.

[28]  Matt Landreman,et al.  Comparison of particle trajectories and collision operators for collisional transport in nonaxisymmetric plasmas , 2013, 1312.6058.

[29]  S. Hudson,et al.  Minimally constrained model of self-organized helical states in reversed-field pinches. , 2013, Physical review letters.

[30]  S. Hudson,et al.  The infinite interface limit of multiple-region relaxed magnetohydrodynamics , 2012, 1212.4917.

[31]  R. L. Dewar,et al.  Non-axisymmetric, multi-region relaxed magnetohydrodynamic equilibrium solutions , 2011, 1107.5202.

[32]  S. Hudson,et al.  Pressure, chaotic magnetic fields, and magnetohydrodynamic equilibria , 2010 .

[33]  S. Hudson,et al.  Are ghost surfaces quadratic-flux-minimizing? , 2009, 0909.2096.

[34]  S. Hudson,et al.  Temperature contours and ghost surfaces for chaotic magnetic fields. , 2008, Physical review letters.

[35]  Donald Monticello,et al.  Pressure-induced breaking of equilibrium flux surfaces in the W7AS stellarator , 2007 .

[36]  K. Arzner Collisional transport in magnetized plasmas , 2003 .

[37]  S. Hudson,et al.  Construction of an integrable field close to any non-integrable toroidal magnetic field , 1998 .

[38]  若谷 誠宏 Stellarator and heliotron devices , 1998 .

[39]  S. Hudson,et al.  Almost-invariant surfaces for magnetic field-line flows , 1996, Journal of Plasma Physics.

[40]  A. Bhattacharjee,et al.  Theory of pressure-induced islands and self-healing in three-dimensional toroidal magnetohydrodynami , 1995 .

[41]  S. Hudson,et al.  Almost invariant manifolds for divergence-free fields , 1994 .

[42]  J. Meiss Symplectic maps, variational principles, and transport , 1992 .

[43]  J B Taylor,et al.  Relaxation and magnetic reconnection in plasmas , 1986 .

[44]  J. Cary,et al.  Pressure induced islands in three‐dimensional toroidal plasma , 1985 .

[45]  H. Renner,et al.  Wendelstein stellarators , 1985 .

[46]  J. B. Taylor,et al.  Relaxation of toroidal plasma and generation of reverse magnetic fields , 1974 .

[47]  W. B. Thompson Transport Processes in the Plasma , 1960 .