Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform

Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors ...

[1]  Muhammad M. Hussain,et al.  Mechanical anomaly impact on metal-oxide-semiconductor capacitors on flexible silicon fabric , 2014 .

[2]  Sigurd Wagner,et al.  Stretchable Interconnects for Elastic Electronic Surfaces , 2005, Proceedings of the IEEE.

[3]  J. M. Nassar,et al.  Low‐cost high‐quality crystalline germanium based flexible devices , 2014 .

[4]  John A. Rogers,et al.  Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors , 2001 .

[5]  Muhammad M. Hussain,et al.  Can We Build a Truly High Performance Computer Which is Flexible and Transparent? , 2013, Scientific Reports.

[6]  John A. Rogers,et al.  Stretchability of encapsulated electronics , 2011 .

[7]  John A. Rogers,et al.  Inorganic Materials and Assembly Techniques for Flexible and Stretchable Electronics , 2015, Proceedings of the IEEE.

[8]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[9]  Yonggang Huang,et al.  Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays , 2009, Science.

[10]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[11]  John A. Rogers,et al.  Mechanics of noncoplanar mesh design for stretchable electronic circuits , 2009 .

[12]  John A. Rogers,et al.  Lateral buckling and mechanical stretchability of fractal interconnects partially bonded onto an elastomeric substrate , 2015 .

[13]  Y. P. Lee,et al.  Multiferroic properties of stretchable BiFeO3 nano-composite film , 2015 .

[14]  Z. Suo,et al.  Mechanics of rollable and foldable film-on-foil electronics , 1999 .

[15]  Muhammad M Hussain,et al.  Flexible and Transparent Silicon‐on‐Polymer Based Sub‐20 nm Non‐planar 3D FinFET for Brain‐Architecture Inspired Computation , 2014, Advanced materials.

[16]  Donggu Im,et al.  In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers. , 2013, ACS nano.

[17]  Bernard Geffroy,et al.  Organic light‐emitting diode (OLED) technology: materials, devices and display technologies , 2006 .

[18]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[19]  M. Hussain,et al.  High temperature study of flexible silicon-on-insulator fin field-effect transistors , 2014 .

[20]  John A. Rogers,et al.  Temperature- and size-dependent characteristics in ultrathin inorganic light-emitting diodes assembled by transfer printing , 2014 .

[21]  Muhammad Mustafa Hussain,et al.  Review on Physically Flexible Nonvolatile Memory for Internet of Everything Electronics , 2015, ArXiv.

[22]  Muhammad Mustafa Hussain,et al.  Transformational silicon electronics. , 2014, ACS nano.

[23]  Muhammad M. Hussain,et al.  Study of harsh environment operation of flexible ferroelectric memory integrated with PZT and silicon fabric , 2015 .

[24]  Yi Cui,et al.  A transparent electrode based on a metal nanotrough network. , 2013, Nature nanotechnology.

[25]  Seung Hwan Ko,et al.  A Hyper‐Stretchable Elastic‐Composite Energy Harvester , 2015, Advanced materials.

[26]  Robert H. Reuss,et al.  Macroelectronics: Perspectives on Technology and Applications , 2005, Proceedings of the IEEE.

[27]  T. Someya,et al.  Stretchable, Large‐area Organic Electronics , 2010, Advanced materials.

[28]  Joanna M Nassar,et al.  Ultrastretchable and Flexible Copper Interconnect‐Based Smart Patch for Adaptive Thermotherapy , 2015, Advanced healthcare materials.

[29]  Khaled N. Salama,et al.  Thin PZT‐Based Ferroelectric Capacitors on Flexible Silicon for Nonvolatile Memory Applications , 2015 .

[30]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[31]  J. Rogers,et al.  Stretchable Inorganic‐Semiconductor Electronic Systems , 2011, Advanced materials.

[32]  Muhammad Mustafa Hussain,et al.  Flexible and semi-transparent thermoelectric energy harvesters from low cost bulk silicon (100). , 2013, Small.

[33]  Bo Zhang,et al.  Materials for Printable, Transparent, and Low‐Voltage Transistors , 2011 .

[34]  Thomas N. Jackson,et al.  All-organic active matrix flexible display , 2006 .

[35]  Hongen Tu,et al.  Origami-enabled deformable silicon solar cells , 2014 .

[36]  Cheng Lv,et al.  Kirigami-based stretchable lithium-ion batteries , 2015, Scientific Reports.

[37]  Shin Hur,et al.  Flexible Inorganic Piezoelectric Acoustic Nanosensors for Biomimetic Artificial Hair Cells , 2014 .

[38]  Galo A. Torres Sevilla,et al.  Structural and electrical characteristics of high-k/metal gate metal oxide semiconductor capacitors fabricated on flexible, semi-transparent silicon (100) fabric , 2013 .

[39]  Dieter K. Schroder,et al.  Semiconductor Material and Device Characterization: Schroder/Semiconductor Material and Device Characterization, Third Edition , 2005 .

[40]  J. Rogers,et al.  Quantum confinement effects in transferrable silicon nanomembranes and their applications on unusual substrates. , 2013, Nano letters.

[41]  Muhammad Mustafa Hussain,et al.  Nonplanar Nanoscale Fin Field Effect Transistors on Textile, Paper, Wood, Stone, and Vinyl via Soft Material-Enabled Double-Transfer Printing. , 2015, ACS nano.

[42]  Muhammad Mustafa Hussain,et al.  Design and characterization of ultra-stretchable monolithic silicon fabric , 2014 .