A filled function with one parameter approach for box constrained optimization problem

The box constrained optimization appears in a wide range of scientific application. Therefore, box constrained problems continue to attract research interest. We address box constrained global optimization by deriving a new filled function with one parameter algorithm, we also prove the analysis properties of the proposed function under some suitable assumptions. Moreover, we show that the unconstrained minimization allows to escape from a local minima of the original objective function. We give experiment results on a solution of problems with different properties.

[1]  J. M. Martínez,et al.  A new trust region algorithm for bound constrained minimization , 1994 .

[2]  Duan Li,et al.  Discrete global descent method for discrete global optimization and nonlinear integer programming , 2007, J. Glob. Optim..

[3]  Panos M. Pardalos,et al.  Filled functions for unconstrained global optimization , 2001, J. Glob. Optim..

[4]  Stefano Lucidi,et al.  New Classes of Globally Convexized Filled Functions for Global Optimization , 2002, J. Glob. Optim..

[5]  L. T. Santos,et al.  Restricted optimization: a clue to a fast and accurate implementation of the Common Reflection Surface Stack method , 1999 .

[6]  P. Toint,et al.  A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds , 1991 .

[7]  Zdenek Dostál,et al.  Box Constrained Quadratic Programming with Proportioning and Projections , 1997, SIAM J. Optim..

[8]  Roberto Andreani,et al.  On the Resolution of the Generalized Nonlinear Complementarity Problem , 2002, SIAM J. Optim..

[9]  Duan Li,et al.  Global Descent Method for Global Optimization , 2010, SIAM J. Optim..

[10]  Francisco Facchinei,et al.  A New Merit Function For Nonlinear Complementarity Problems And A Related Algorithm , 1997, SIAM J. Optim..

[11]  R. Ge,et al.  A class of filled functions for finding global minimizers of a function of several variables , 1987 .

[12]  Marcos Raydan,et al.  Molecular conformations from distance matrices , 1993, J. Comput. Chem..

[13]  E. Birgin,et al.  Estimation of the optical constants and the thickness of thin films using unconstrained optimization , 2006 .

[14]  William W. Hager,et al.  An affine-scaling interior-point CBB method for box-constrained optimization , 2009, Math. Program..

[15]  Duan Li,et al.  Discrete Filled Function Method for Discrete Global Optimization , 2005, Comput. Optim. Appl..

[16]  J. M. Martínez BOX-QUACAN and the implementation of Augmented Lagrangian algorithms for minimization with inequalit , 1998 .

[17]  William W. Hager,et al.  A New Active Set Algorithm for Box Constrained Optimization , 2006, SIAM J. Optim..

[18]  Defeng Sun,et al.  A New Unconstrained Differentiable Merit Function for Box Constrained Variational Inequality Problems and a Damped Gauss-Newton Method , 1999, SIAM J. Optim..

[19]  Xian Liu Finding Global Minima with a Computable Filled Function , 2001, J. Glob. Optim..

[20]  Gerardo Toraldo,et al.  On the Solution of Large Quadratic Programming Problems with Bound Constraints , 1991, SIAM J. Optim..

[21]  Zhi-You Wu,et al.  Global descent methods for unconstrained global optimization , 2011, J. Glob. Optim..

[22]  Renpu Ge,et al.  A Filled Function Method for Finding a Global Minimizer of a Function of Several Variables , 1990, Math. Program..

[23]  José Mario Martínez,et al.  Large-Scale Active-Set Box-Constrained Optimization Method with Spectral Projected Gradients , 2002, Comput. Optim. Appl..

[24]  R. Baker Kearfott,et al.  An interval branch and bound algorithm for bound constrained optimization problems , 1992, J. Glob. Optim..

[25]  Zhi-You Wu,et al.  A filled function method for constrained global optimization , 2007, J. Glob. Optim..

[26]  Duan Li,et al.  A New Filled Function Method for Global Optimization , 2004, J. Glob. Optim..