A divergence free weak virtual element method for the Stokes–Darcy problem on general meshes

Abstract This paper presents a weak virtual element method on general meshes for the Stokes–Darcy problem with the Beavers–Joseph–Saffman interface condition. The velocity is discretized by the H ( div ) virtual element. The pressure is approximated by discontinuous piecewise polynomials. Besides, a polynomial space on the element faces is introduced to approximate the tangential trace of the velocity in the Stokes equations. The velocity on the discrete level is exactly divergence free and thus the exact mass conservation is preserved in the discretization. The well-posedness of the discrete problem is proved and an a priori error estimate is derived that implies the error for the velocity in a suitable norm does not depend on the pressure. A series of numerical experiments are reported to illustrate the performance of the method.

[1]  J. Zeman,et al.  Localization analysis of an energy-based fourth-order gradient plasticity model , 2015, 1501.06788.

[2]  G. Gatica,et al.  A conforming mixed finite-element method for the coupling of fluid flow with porous media flow , 2008 .

[3]  Gianmarco Manzini,et al.  Mimetic finite difference method for the Stokes problem on polygonal meshes , 2009, J. Comput. Phys..

[4]  Wenbin Chen,et al.  Weak Galerkin method for the coupled Darcy-Stokes flow , 2014, 1407.5604.

[5]  Francisco-Javier Sayas,et al.  Convergence of a family of Galerkin discretizations for the Stokes-Darcy coupled problem , 2011 .

[6]  Stella Krell,et al.  A Hybrid High-Order Method for the Steady Incompressible Navier–Stokes Problem , 2016, J. Sci. Comput..

[7]  Wenbin Chen,et al.  A Parallel Robin-Robin Domain Decomposition Method for the Stokes-Darcy System , 2011, SIAM J. Numer. Anal..

[8]  Lourenço Beirão da Veiga,et al.  H(div)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H({\text {div}})$$\end{document} and H(curl)\documentclass[12pt] , 2015, Numerische Mathematik.

[9]  Richard S. Falk,et al.  Basic principles of mixed Virtual Element Methods , 2014 .

[10]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[11]  Youngmok Jeon,et al.  A Hybrid Discontinuous Galerkin Method for Elliptic Problems , 2010, SIAM J. Numer. Anal..

[12]  Yinnian He,et al.  Discontinuous finite volume methods for the stationary Stokes–Darcy problem , 2016 .

[13]  B. Rivière,et al.  Numerical modelling of coupled surface and subsurface flow systems , 2010 .

[14]  Xiaoming He,et al.  Robin–Robin domain decomposition methods for the steady-state Stokes–Darcy system with the Beavers–Joseph interface condition , 2011, Numerische Mathematik.

[15]  Junping Wang,et al.  A weak Galerkin mixed finite element method for second order elliptic problems , 2012, Math. Comput..

[16]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[17]  Gianmarco Manzini,et al.  Convergence Analysis of the Mimetic Finite Difference Method for Elliptic Problems , 2009, SIAM J. Numer. Anal..

[18]  Jinchao Xu,et al.  A Two-Grid Method of a Mixed Stokes-Darcy Model for Coupling Fluid Flow with Porous Media Flow , 2007, SIAM J. Numer. Anal..

[19]  Lourenço Beirão da Veiga,et al.  A virtual element method for the acoustic vibration problem , 2016, Numerische Mathematik.

[20]  P. Saffman On the Boundary Condition at the Surface of a Porous Medium , 1971 .

[21]  Francisco-Javier Sayas,et al.  A Decoupled Preconditioning Technique for a Mixed Stokes–Darcy Model , 2013, J. Sci. Comput..

[22]  Long Chen,et al.  An interface-fitted mesh generator and virtual element methods for elliptic interface problems , 2017, J. Comput. Phys..

[23]  Francisco-Javier Sayas,et al.  Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem , 2011, Math. Comput..

[24]  B. Rivière,et al.  On the solution of the coupled Navier–Stokes and Darcy equations , 2009 .

[25]  Béatrice Rivière,et al.  A strongly conservative finite element method for the coupling of Stokes and Darcy flow , 2010, J. Comput. Phys..

[26]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[27]  A. Ern,et al.  A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device , 2018, J. Comput. Phys..

[28]  Ivan Yotov,et al.  Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes–Darcy flows on polygonal and polyhedral grids , 2013, Numerische Mathematik.

[29]  Xiaoming He,et al.  A Domain Decomposition Method for the Steady-State Navier-Stokes-Darcy Model with Beavers-Joseph Interface Condition , 2015, SIAM J. Sci. Comput..

[30]  Susanne C. Brenner,et al.  Virtual element methods on meshes with small edges or faces , 2017, Mathematical Models and Methods in Applied Sciences.

[31]  Ivan Yotov,et al.  Coupling Stokes--Darcy Flow with Transport , 2009, SIAM J. Sci. Comput..

[32]  Jianguo Huang,et al.  Some error analysis on virtual element methods , 2017, 1708.08558.

[33]  V. Nassehi,et al.  Numerical Analysis of Coupled Stokes/Darcy Flows in Industrial Filtrations , 2006 .

[34]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[35]  G. Paulino,et al.  PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .

[36]  D. Joseph,et al.  Boundary conditions at a naturally permeable wall , 1967, Journal of Fluid Mechanics.

[37]  Long Chen,et al.  A Divergence Free Weak Virtual Element Method for the Stokes Problem on Polytopal Meshes , 2018, J. Sci. Comput..

[38]  Alfio Quarteroni,et al.  Robin-Robin Domain Decomposition Methods for the Stokes-Darcy Coupling , 2007, SIAM J. Numer. Anal..

[39]  Béatrice Rivière,et al.  Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems , 2005, J. Sci. Comput..

[40]  Frédéric Hecht,et al.  Mortar finite element discretization of a model coupling Darcy and Stokes equations , 2008 .

[41]  Alessandro Russo,et al.  $$H({\text {div}})$$H(div) and $$H(\mathbf{curl})$$H(curl)-conforming virtual element methods , 2016 .

[42]  S. Meddahi,et al.  Strong coupling of finite element methods for the Stokes–Darcy problem , 2012, 1203.4717.

[43]  Christoph Lehrenfeld,et al.  A Strongly Conservative Hybrid DG/Mixed FEM for the Coupling of Stokes and Darcy Flow , 2018, Journal of Scientific Computing.

[44]  Alessandro Russo,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014, 1506.07328.

[45]  Junping Wang,et al.  A weak Galerkin finite element method for second-order elliptic problems , 2011, J. Comput. Appl. Math..

[46]  Bernardo Cockburn,et al.  The Derivation of Hybridizable Discontinuous Galerkin Methods for Stokes Flow , 2009, SIAM J. Numer. Anal..

[47]  Franco Brezzi,et al.  Virtual Element Methods for plate bending problems , 2013 .

[48]  Hengguang Li,et al.  A Posteriori Error Estimates for the Weak Galerkin Finite Element Methods on Polytopal Meshes , 2019, Communications in Computational Physics.

[49]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[50]  Ivan Yotov,et al.  Coupling Fluid Flow with Porous Media Flow , 2002, SIAM J. Numer. Anal..

[51]  Béatrice Rivière,et al.  Error analysis for a monolithic discretization of coupled Darcy and Stokes problems , 2014, J. Num. Math..

[52]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.