P-I-N Photodiodes

Publisher Summary This chapter discusses the design and performance of photodetectors for use in optical fiber communications, focusing in particular on wavelength-division multiplexing (WDM) applications. The performance of photodetectors is evaluated in terms of three main characteristics: responsivity, noise, and bandwidth. The chapter describes P-I-N photodiodes (PDs) composed mainly of indium gallium arsenide (InGaAs) as a light-absorption layer with no internal gain. The chapter discusses the basic device parameters needed to obtain a large signal-to-noise (S/N) ratio in receiver circuits and deals with the concept, design, and expected performance of photodetectors. It describes frequency response measured for different layer structures and light penetrations. Response limitations in InGaAs/InP are also evaluated. Dark-current characteristics both theoretically estimated and experimentally obtained for an InGaAs p+n junction are discussed. The dark-current reduction is one of the most important factors responsible for a large S/N. The chapter further introduces several typical detectors that are applicable to WDM systems. These include matured basic InGaAs PIN-PDs, highly efficient high-speed waveguide PIN-PDs, uni-traveling carrier PDs, highly efficient PDs easily coupled to optical fibers, and PDs responsible for high-input power handling.

[1]  Kenji Kawano,et al.  A high-efficiency 50 GHz InGaAs multimode waveguide photodetector , 1992 .

[2]  Osamu Wada,et al.  High-reliability flip-chip GaInAs/InP pin photodiode , 1990 .

[3]  S. Forrest,et al.  In0.53Ga0.47As photodiodes with dark current limited by generation‐recombination and tunneling , 1980 .

[4]  T. Pearsall,et al.  An experimental determination of the effective masses for GaxIn1−xAsyP1−y alloys grown on InP , 1979 .

[5]  Osaake Nakajima,et al.  High-output-voltage, high speed, high efficiency uni-travelling-carrier waveguide photodiode , 1998 .

[6]  C. Goldsmith,et al.  Coherent combining of RF signals in a traveling-wave photodetector array , 1997, IEEE Photonics Technology Letters.

[7]  Osaake Nakajima,et al.  Selective-area impurity-doped planar edge-coupled waveguide photodiode (SIMPLE-WGPD) for low-cost, low-power-consumption optical hybrid modules , 1996 .

[8]  Low-cost, high-speed and high-responsivity photodiode module employing edge-illuminated refracting-facet photodiode , 1999 .

[9]  Toshikazu Hashimoto,et al.  Application of planar lightwave circuit platform to hybrid integrated optical WDM transmitter/receiver module , 1995 .

[10]  William Shockley,et al.  Electrons and Holes in Semiconductors , 1952 .

[11]  D. E. Sawyer,et al.  Narrow Base Germanium Photodiodes , 1958, Proceedings of the IRE.

[12]  W. Powazinik,et al.  Measurement of hole velocity in n-type InGaAs , 1987 .

[13]  R. Soref,et al.  Electrorefraction and electroabsorption in InP, GaAs, GaSb, InAs, and InSb , 1987 .

[14]  J.E. Bowers,et al.  Travelling-wave photodetectors with 172-GHz bandwidth and 76-GHz bandwidth-efficiency product , 1995, IEEE Photonics Technology Letters.

[15]  G. Lucovsky,et al.  Transit-time considerations in p-i-n diodes. , 1964 .

[16]  Hiroshi Ito,et al.  InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth , 2000 .

[17]  L. Hoffmann,et al.  Large-hole diffusion length and lifetime in InGaAs/InP double-heterostructure photodiodes , 1986 .

[18]  P. J. Williams,et al.  OEIC WDM transceiver modules for local access networks , 1995 .

[19]  T. Nagatsuma,et al.  110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-/spl mu/m wavelength , 1994, IEEE Photonics Technology Letters.

[20]  Albert Chin,et al.  Enhancement of quantum efficiency in thin photodiodes through absorptive resonance , 1991 .

[21]  Arthur,et al.  Optical-absorption coefficient of In1-xGaxAs/InP. , 1988, Physical review. B, Condensed matter.

[22]  J. Campbell,et al.  High quantum efficiency, long wavelength InP/InGaAs microcavity photodiode , 1991 .

[23]  J. Chevrier,et al.  A Ga0.47In0.53As/InP heterophotodiode with reduced dark current , 1981, IEEE Journal of Quantum Electronics.

[24]  Chi-Kuang Sun,et al.  120-GHz long-wavelength low-capacitance photodetector with an air-bridged coplanar metal waveguide , 1995, IEEE Photonics Technology Letters.

[25]  H. Fukano,et al.  High-speed and high-output voltage edge-illuminated refracting-facet photodiode , 1999 .

[26]  K. Makita,et al.  High-speed, high-power and high-efficiency photodiodes with evanescently coupled graded-index waveguide , 2000 .

[27]  C. Burrus,et al.  Monolithic eight-wavelength demultiplexed receiver for dense WDM applications , 1995, IEEE Photonics Technology Letters.

[28]  G. Heise,et al.  Development of a photonic integrated transceiver chip for WDM transmission , 1994, IEEE Photonics Technology Letters.

[29]  C. Henry,et al.  Radiative and nonradiative lifetimes in n-type and p-type 1.6 μm InGaAs , 1984 .

[30]  Y. Matsumoto Diffusion of Cd and Zn into InP and InGaAsP (Eg=0.95-1.35 eV) , 1983 .

[31]  D. L. Crawford,et al.  Ultrafast graded double‐heterostructure GaInAs/InP photodiode , 1991 .

[32]  Takashi Mikawa,et al.  InP/InGaAs PIN photodiodes in the 1 μm wavelength region , 1984 .

[33]  J. Bowers,et al.  Traveling-wave photodetectors , 1992, IEEE Photonics Technology Letters.

[34]  Tatsuo Itoh,et al.  Coplanar waveguide fed quasi-Yagi antenna , 2000 .

[35]  E. H. Bottcher,et al.  Inductive bandwidth enhancement of sub-μm InAlAs-InGaAs MSM photodetectors , 1995, IEEE Photonics Technology Letters.

[36]  H. Takahashi,et al.  Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film , 1993, IEEE Photonics Technology Letters.

[37]  Yoshimasa Sugimoto,et al.  High-temperature aging tests on planar structure InGaAs/InP PIN photodiodes with Ti/Pt and Ti/Au contact , 1984 .

[38]  T. Ishibashi,et al.  InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150 GHz , 1998, IEEE Photonics Technology Letters.

[39]  J. Bowers,et al.  Ultrawide-band long-wavelength p-i-n photodetectors , 1987 .

[40]  J. Chyi,et al.  Resonant cavity-enhanced (RCE) photodetectors , 1991 .

[41]  O. Vendier,et al.  Thin-film inverted MSM photodetectors , 1996, IEEE Photonics Technology Letters.

[42]  S. D. Perrin,et al.  50 GHz InGaAs edge-coupled PIN photodetector , 1991 .

[43]  T. Ishibashi,et al.  High-Speed Response of Uni-Traveling-Carrier Photodiodes , 1997 .

[44]  J. Chyi,et al.  High-responsivity InGaAs MSM photodetectors with semi-transparent Schottky contacts , 1995 .

[45]  Kazuo Nakajima,et al.  Tunneling currents in In0.53Ga0.47As homojunction diodes and design of InGaAs/InP hetero-structure avalanche photodiodes , 1981 .

[46]  J. Soole,et al.  InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications , 1991 .

[47]  Stephen R. Forrest,et al.  Evidence for tunneling in reverse‐biased III‐V photodetector diodes , 1980 .

[48]  Yuzo Yoshikuni,et al.  Polarization Independent Semiconductor Arrayed Waveguide Gratings Using a Deep-Ridge Waveguide Structure , 1998 .

[49]  Kazuo Hagimoto,et al.  40 Gbit/s high sensitivity optical receiver with uni-travelling-carrier photodiode acting as decision IC driver , 1998 .

[50]  P. P. Smyth,et al.  Experimental comparison of a germanium avalanche photodiode and InGaAs PINFET receiver for longer wavelength optical communication systems , 1982 .

[51]  H. Griem,et al.  High-performance back-illuminated InGaAs/InAlAs MSM photodetector with a record responsivity of 0.96 A/W , 1992, IEEE Photonics Technology Letters.

[52]  G.A. Davis,et al.  A 920-1650-nm high-current photodetector , 1996, IEEE Photonics Technology Letters.

[53]  Ikuo Mito,et al.  Selective metalorganic vapor phase epitaxial growth of InGaAsP / InP layers with bandgap energy control in InGaAs / InGaAsP multiple-quantum well structures , 1993 .

[54]  C. Caneau,et al.  Application of indium-tin-oxide with improved transmittance at 1.3 mu m for MSM photodetectors , 1993, IEEE Photonics Technology Letters.

[55]  Ming C. Wu,et al.  High-power high-speed photodetectors-design, analysis, and experimental demonstration , 1997 .

[56]  M. Kawashima,et al.  Required Donor Concentration of Epitaxial Layers for Efficient InGaAsP Avalanche Photodiodes , 1980 .

[57]  S. Personick Receiver design for digital fiber optic communication systems, II , 1973 .

[58]  E. Kane Theory of Tunneling , 1961 .

[59]  T. Takeuchi,et al.  A transceiver PIC for bidirectional optical communication fabricated by bandgap energy controlled selective MOVPE , 1996, IEEE Photonics Technology Letters.

[60]  A. J. Moseley,et al.  Measurement of absorption coefficients of Ga 0.47 In 0.53 As over the wavelength range 1.0-1.7 μm , 1985 .

[61]  Yutaka Miyamoto,et al.  40 Gbit/s monolithic digital OEIC composed of unitravelling-carrier photodiode and InP HEMTs , 2000 .