Multi-hypothesis map-matching on 3D navigable maps using raw GPS measurements

For many road transport applications, maps of the environment where the vehicles evolve are available. This information can contribute to the positioning process itself. In this paper, global positioning on navigable maps is formalized in a general Bayesian framework. Using a tight integration of map data, a generic solution to multi-hypothesis map-matching is described. This method is then applied to the use of raw GPS measurements: pseudoranges and Dopplers. State space equations are given and a marginalized particle filter is proposed to solve efficiently the problem. Experimental results are presented and show that this approach can provide good results even if few satellites are visible.

[1]  N. Samama Global Positioning: Technologies and Performance , 2008 .

[2]  P. Bonnifait,et al.  Road Navigation System Monitoring using a Pseudorange Snapshot Test , 2008 .

[3]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[4]  J. Greenfeld MATCHING GPS OBSERVATIONS TO LOCATIONS ON A DIGITAL MAP , 2002 .

[5]  Philippe Bonnifait,et al.  Map-Matching Integrity using Multi-Sensor Fusion and Multi- Hypothesis Road Tracking , 2008 .

[6]  Shuzhi Sam Ge,et al.  Autonomous vehicle positioning with GPS in urban canyon environments , 2001, IEEE Trans. Robotics Autom..

[7]  S. Syed,et al.  GPS Based Map Matching in the Pseudorange Measurement Domain , 2004 .

[8]  Christophe Andrieu,et al.  Efficient particle filtering for jump Markov systems. Application to time-varying autoregressions , 2003, IEEE Trans. Signal Process..

[9]  Véronique Berge-Cherfaoui,et al.  Map-Matching Integrity Using Multihypothesis Road-Tracking , 2008, J. Intell. Transp. Syst..

[10]  Maan El Badaoui El Najjar,et al.  A Road Matching Method for Precise Vehicle Localization Using Hybrid Bayesian Network , 2008, J. Intell. Transp. Syst..

[11]  Robert B. Noland,et al.  Current map-matching algorithms for transport applications: State-of-the art and future research directions , 2007 .

[12]  Dieter Fox,et al.  KLD-Sampling: Adaptive Particle Filters , 2001, NIPS.

[13]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[14]  Thomas B. Schön,et al.  Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.

[15]  G. Blewitt,et al.  Intelligent Positioning: GIS-GPS Unification , 2006 .

[16]  Dieter Fox,et al.  Adapting the Sample Size in Particle Filters Through KLD-Sampling , 2003, Int. J. Robotics Res..

[17]  Rafael Toledo-Moreo,et al.  Lane-Level Integrity Provision for Navigation and Map Matching With GNSS, Dead Reckoning, and Enhanced Maps , 2010, IEEE Transactions on Intelligent Transportation Systems.

[18]  Nando de Freitas,et al.  Diagnosis by a waiter and a Mars explorer , 2004, Proceedings of the IEEE.