Unobserved Heterogeneity in Income Dynamics: An Empirical Bayes Perspective

Empirical Bayes methods for Gaussian compound decision problems involving longitudinal data are considered. The new convex optimization formulation of the nonparametric (Kiefer–Wolfowitz) maximum likelihood estimator for mixture models is employed to construct nonparametric Bayes rules for compound decisions. The methods are first illustrated with some simulation examples and then with an application to models of income dynamics. Using panel data, we estimate a simple dynamic model of earnings that incorporates bivariate heterogeneity in intercept and variance of the innovation process. Profile likelihood is employed to estimate an AR(1) parameter controlling the persistence of the innovations. We find that persistence is relatively modest, , when we permit heterogeneity in variances. Evidence of negative dependence between individual intercepts and variances is revealed by the nonparametric estimation of the mixing distribution, and has important consequences for forecasting future income trajectories.

[1]  Roger Koenker,et al.  On a Problem of Robbins , 2016 .

[2]  H. Robbins An Empirical Bayes Approach to Statistics , 1956 .

[3]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[4]  J. Heckman,et al.  A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data , 1984 .

[5]  Jean-Marc Robin,et al.  Generalized Non-Parametric Deconvolution with an Application to Earnings Dynamics , 2010 .

[6]  Anton Schick,et al.  Contemporary developments in statistical theory : a festschrift for Hira Lal Koul , 2014 .

[7]  M. Arellano Panel Data Econometrics , 2002 .

[8]  Christian P. Robert,et al.  Large-scale inference , 2010 .

[9]  R. Blundell,et al.  Labor Income Dynamics and the Insurance from Taxes, Transfers, and the Family , 2014, SSRN Electronic Journal.

[10]  Isaac Dialsingh,et al.  Large-scale inference: empirical Bayes methods for estimation, testing, and prediction , 2012 .

[11]  K. Mather,et al.  Components of variation , 1971 .

[12]  R. Koenker,et al.  UNOBSERVED HETEROGENEITY IN LONGITUDINAL DATA : AN EMPIRICAL BAYES PERSPECTIVE , 2013 .

[13]  Edward E. Leamer,et al.  Matrix Weighted Averages and Posterior Bounds , 1976 .

[14]  Ted Juhl,et al.  A Test for Slope Heterogeneity in Fixed Effects Models , 2014 .

[15]  Andrew Chesher,et al.  Testing for Neglected Heterogeneity , 1984 .

[16]  Roger Koenker A Gaussian compound decision bakeoff , 2014 .

[17]  C. J. Lawrence Robust estimates of location : survey and advances , 1975 .

[18]  A. Goldberger Best Linear Unbiased Prediction in the Generalized Linear Regression Model , 1962 .

[19]  Elena Manresa,et al.  Grouped Patterns of Heterogeneity in Panel Data , 2015 .

[20]  D. F. Andrews,et al.  Robust Estimates of Location: Survey and Advances. , 1975 .

[21]  Jiaying Gu,et al.  NEYMAN’S C(α) TEST FOR UNOBSERVED HETEROGENEITY , 2013, Econometric Theory.

[22]  Wenhua Jiang,et al.  General maximum likelihood empirical Bayes estimation of normal means , 2009, 0908.1709.

[23]  U. Grenander,et al.  Probability and Statistics: The Harald Cramer Volume , 1961 .

[24]  Laura Hospido,et al.  Modelling Heterogeneity and Dynamics in the Volatility of Individual Wages , 2010, SSRN Electronic Journal.

[25]  H. Robbins Estimating Many Variances , 1982 .

[26]  Lawrence D. Brown,et al.  NONPARAMETRIC EMPIRICAL BAYES AND COMPOUND DECISION APPROACHES TO ESTIMATION OF A HIGH-DIMENSIONAL VECTOR OF NORMAL MEANS , 2009, 0908.1712.

[27]  Gary Chamberlain,et al.  Analysis of Covariance with Qualitative Data , 1979 .

[28]  R. Koenker,et al.  CONVEX OPTIMIZATION, SHAPE CONSTRAINTS, COMPOUND DECISIONS, AND EMPIRICAL BAYES RULES , 2013 .

[29]  .. W. V. Der,et al.  On Profile Likelihood , 2000 .

[30]  H. Robbins Asymptotically Subminimax Solutions of Compound Statistical Decision Problems , 1985 .

[31]  M. Friedman,et al.  Theory of the Consumption Function , 1957 .

[32]  J. Heckman,et al.  Econometric duration analysis , 1984 .

[33]  B. Schmolck Testing for homogeneity , 2000 .

[34]  M. Browning,et al.  Modelling income processes with lots of heterogeneity , 2010 .

[35]  Lawrence D. Brown,et al.  The Poisson Compound Decision Problem Revisited , 2010, 1006.4582.

[36]  Marianthi Markatou,et al.  Semiparametric Estimation Of Regression Models For Panel Data , 1993 .

[37]  P. Hall,et al.  Optimal Rates of Convergence for Deconvolving a Density , 1988 .

[38]  Costas Meghir,et al.  Income Variance Dynamics and Heterogeneity , 2001 .

[39]  F. Dyson A Method for Correcting Series of Parallax Observations , 1926 .

[40]  John Geweke,et al.  An empirical analysis of earnings dynamics among men in the PSID: 1968-1989 , 2000 .

[41]  J. Kiefer,et al.  CONSISTENCY OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN THE PRESENCE OF INFINITELY MANY INCIDENTAL PARAMETERS , 1956 .

[42]  F. Zimmermann,et al.  Bulletin de l'Institut international de Statistique , 1910 .

[43]  B. Efron Tweedie’s Formula and Selection Bias , 2011, Journal of the American Statistical Association.

[44]  Thomas MaCurdy,et al.  The use of time series processes to model the error structure of earnings in a longitudinal data analysis , 1982 .

[45]  Steven J. Haider Earnings Instability and Earnings Inequality of Males in the United States: 1967–1991 , 2001, Journal of Labor Economics.

[46]  David R. Cox,et al.  Some remarks on overdispersion , 1983 .

[47]  S. Bonhomme,et al.  Generalized Nonparametric Deconvolution with an Application to Earnings Dynamics 1 , 2006 .

[48]  Keisuke Hirano,et al.  Semiparametric Bayesian Inference in Autoregressive Panel Data Models , 2002 .

[49]  N. Laird Nonparametric Maximum Likelihood Estimation of a Mixing Distribution , 1978 .

[50]  Jiahua Chen Optimal Rate of Convergence for Finite Mixture Models , 1995 .

[51]  S. Cosslett DISTRIBUTION-FREE MAXIMUM LIKELIHOOD ESTIMATOR OF THE BINARY CHOICE MODEL1 , 1983 .

[52]  Fatih Guvenen,et al.  What Do Data on Millions of U.S. Workers Reveal About Life-Cycle Earnings Risk? , 2015 .

[53]  Jianqing Fan On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems , 1991 .

[54]  Gary Chamberlain,et al.  Predictive Distributions based on Longitudinal Earnings Data , 1999 .

[55]  Lee H. Dicker,et al.  Nonparametric empirical Bayes and maximum likelihood estimation for high-dimensional data analysis , 2014, 1407.2635.

[56]  R. Koenker,et al.  TESTING FOR HOMOGENEITY IN MIXTURE MODELS , 2013, Econometric Theory.

[57]  G. Robinson That BLUP is a Good Thing: The Estimation of Random Effects , 1991 .

[58]  Roger Koenker,et al.  Frailty, profile likelihood, and medfly mortality , 2014 .

[59]  Jianqing Fan,et al.  Generalized likelihood ratio statistics and Wilks phenomenon , 2001 .

[60]  Prem S. Puri,et al.  On Optimal Asymptotic Tests of Composite Statistical Hypotheses , 1967 .

[61]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[62]  Michael Baker Growth-Rate Heterogeneity and the Covariance Structure of Life-Cycle Earnings , 1997, Journal of Labor Economics.

[63]  M. Arellano,et al.  The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators , 2003 .

[64]  Fatih Guvenen,et al.  An Empirical Investigation of Labor Income Processes , 2007 .

[65]  L. Lillard,et al.  Components of variation in panel earnings data: American scientists 1960-70 , 1979 .