Application of Raman Spectroscopy to Retinal Proteins

Raman spectroscopic studies on photoreactive retinal proteins are comprehensively described, including the basic physics of Raman scattering and illustrative examples of the types of information on the structure and function of the retinal chromophore and its environment which can be obtained from the vibrational Raman spectra. In addition, practical advice and recipes are given which should enable the reader to plan and eventually perform a Raman experiment in a photolabile retinal protein. A dominant role is played by the resonance Raman (RR) experiment with visible laser excitation which selectively probes the retinal chromophore. Much discussion is devoted to bacteriorhodopsin (bR) and its photocycle as a paradigm for a light-induced reaction of a retinal protein. Various time-resolved techniques are described to study the temporal evolution of the bR chromophore by probing RR spectra of intermediate states. Vibrational Raman spectra are interpreted in terms of structure and structural changes of the chromophore. RR spectroscopic studies on halorhodopsin, sensory rhodopsin, and visual pigments are reported, as well as on modified proteins in which retinal analogues are incorporated, and on site-specific mutants. Results of ultraviolet RR experiments which selectively probe the aromatic side chains in the protein backbone are reported. In addition, a promising new technique of near-infrared Raman excitation is discussed. Finally, application of coherent anti-Stokes Raman spectroscopy (CARS) to retinal proteins is reported.

[1]  H. Hamaguchi,et al.  Nanosecond time-resolved infrared spectroscopy distinguishes two K species in the bacteriorhodopsin photocycle. , 1995, Biophysical journal.

[2]  M. Sheves,et al.  PICOSECOND TIME-RESOLVED ABSORPTION DYNAMICS IN THE ARTIFICIAL BACTERIORHODOPSIN PIGMENT BR6.9 , 1995 .

[3]  M. Sheves,et al.  Primary picosecond molecular events in the photoreaction of the BR5.12 artificial bacteriorhodopsin pigment. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[4]  B. Schrader Infrared and Raman Spectroscopy , 1995 .

[5]  J. Lanyi,et al.  Water-Mediated Proton Transfer in Proteins: An FTIR Study of Bacteriorhodopsin , 1995 .

[6]  D. Oesterhelt,et al.  Sensory rhodopsin I photocycle intermediate SRI380 contains 13‐cis retinal bound via an unprotonated Schiff base , 1994, FEBS letters.

[7]  G. Atkinson,et al.  Picosecond resonance coherent anti-Stokes Raman spectroscopy of bacteriorhodopsin: quantitative third-order susceptibility analysis of the dark-adapted mixture , 1994 .

[8]  H. Khorana,et al.  Detection of a water molecule in the active-site of bacteriorhodopsin: hydrogen bonding changes during the primary photoreaction. , 1994, Biochemistry.

[9]  R G Griffin,et al.  Synergy in the spectral tuning of retinal pigments: complete accounting of the opsin shift in bacteriorhodopsin. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[10]  H. Khorana,et al.  Site-directed isotope labelling and FTIR spectroscopy of bacteriorhodopsin , 1994, Nature Structural Biology.

[11]  B. L. Volodin,et al.  Picosecond resonance coherent anti-Stokes Raman spectroscopy of bacteriorhodopsin: spectra and quantitative third-order susceptibility analysis of the light-adapted BR-570 , 1994 .

[12]  R. Callender,et al.  Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange. , 1994, Biophysical journal.

[13]  Y. Fukada,et al.  What makes red visual pigments red? A resonance Raman microprobe study of retinal chromophore structure in iodopsin. , 1994, Biochemistry.

[14]  J. Lanyi,et al.  Interaction of aspartate-85 with a water molecule and the protonated Schiff base in the L intermediate of bacteriorhodopsin: a Fourier-transform infrared spectroscopic study. , 1994, Biochemistry.

[15]  M. Sheves,et al.  Picosecond time-resolved resonance raman spectrum of a K-intermediate in the photoreaction of the artificial bacteriorhodopsin pigment BR6.11 , 1993 .

[16]  P. Hildebrandt,et al.  Time-Resolved and Two-Dimensional NIR FT-Raman Spectroscopy , 1993 .

[17]  R. Griffin,et al.  Internuclear distance measurement in a reaction intermediate: solid-state carbon-13 NMR rotational resonance determination of the Schiff base configuration in the M photointermediate of bacteriorhodopsin , 1993 .

[18]  H. Khorana,et al.  Hydrogen bonding interactions with the Schiff base of bacteriorhodopsin. Resonance Raman spectroscopy of the mutants D85N and D85A. , 1993, The Journal of biological chemistry.

[19]  M. Sheves,et al.  The Schiff base bond configuration in bacteriorhodopsin and in model compounds. , 1993, Biochemistry.

[20]  W. Eisfeld,et al.  Resonance Raman and optical transient studies on the light-induced proton pump of bacteriorhodopsin reveal parallel photocycles. , 1993, Biochemistry.

[21]  S. O. Smith,et al.  Solid state NMR study of [epsilon-13C]Lys-bacteriorhodopsin: Schiff base photoisomerization. , 1993, Biophysical journal.

[22]  C. Kato,et al.  Time-resolved infrared spectral analysis of the KL-to-L conversion in the photocycle of bacteriorhodopsin. , 1993, Biochemistry.

[23]  R. Mathies,et al.  Resonance Raman study of halorhodopsin photocycle kinetics, chromophore structure, and chloride-pumping mechanism. , 1992, Biochemistry.

[24]  I. Harada,et al.  ULTRAVIOLET RESONANCE RAMAN STUDY ON PURPLE AND BLUE MEMBRANES OF Halobacterium halobium , 1992 .

[25]  R. Mathies,et al.  Synthesis and vibrational analysis of a locked 14-s-cis conformer of retinal , 1992 .

[26]  R. Lohrmann,et al.  Time-resolved resonance Raman studies of bacteriorhodopsin and its intermediates K590 and L550: Biological implications , 1992 .

[27]  R. Griffin,et al.  Rotational resonance NMR study of the active site structure in bacteriorhodopsin: conformation of the Schiff base linkage. , 1992, Biochemistry.

[28]  J. Mourant,et al.  Infrared study of the L, M, and N intermediates of bacteriorhodopsin using the photoreaction of M. , 1992, Biochemistry.

[29]  W. Peticolas,et al.  Ultraviolet Resonance Raman Evidence for a Change of Hydrophobicity of the Retinal Pocket in the M State of Bacteriorhodopsin , 1992 .

[30]  R. Mathies,et al.  Time-resolved ultraviolet resonance Raman studies of protein structure: application to bacteriorhodopsin. , 1992, Biochemistry.

[31]  H. Khorana,et al.  Resonance Raman microprobe spectroscopy of rhodopsin mutants: effect of substitutions in the third transmembrane helix. , 1992, Biochemistry.

[32]  Kenneth J. Rothschild,et al.  FTIR difference spectroscopy of bacteriorhodopsin: Toward a molecular model , 1992, Journal of bioenergetics and biomembranes.

[33]  R. Efremov,et al.  Effect of hydrophobic environment on the resonance Raman spectra of tryptophan residues in proteins , 1992 .

[34]  T. Yoshizawa,et al.  FOURIER TRANSFORM INFRARED SPECTRAL STUDIES ON THE SCHIFF BASE MODE OF ALL‐trans BACTERIORHODOPSIN and ITS PHOTOINTERMEDIATES, K and L * , 1991 .

[35]  H. Khorana,et al.  Replacement of leucine-93 by alanine or threonine slows down the decay of the N and O intermediates in the photocycle of bacteriorhodopsin: implications for proton uptake and 13-cis-retinal----all-trans-retinal reisomerization. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Richard A. Mathies,et al.  Picosecond time-resolved resonance Raman spectroscopy of bacteriorhodopsin's J, K, and KL intermediates , 1991 .

[37]  T. Yoshizawa,et al.  Fourier transform infrared study of the N intermediate of bacteriorhodopsin. , 1991, Biochemistry.

[38]  J. Lanyi,et al.  Thermodynamics and energy coupling in the bacteriorhodopsin photocycle. , 1991, Biochemistry.

[39]  Y. Koutalos,et al.  Resonance Raman studies of the HOOP modes in octopus bathorhodopsin with deuterium-labeled retinal chromophores. , 1991, Biochemistry.

[40]  K. Rothschild,et al.  Protein dynamics in the bacteriorhodopsin photocycle: submillisecond Fourier transform infrared spectra of the L, M, and N photointermediates. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Lohrmann,et al.  RESONANCE RAMAN STUDIES ON THE INTERMEDIATE K-590 IN THE PHOTOCYCLE OF BACTERIORHODOPSIN , 1991 .

[42]  S. P. Fodor,et al.  RESONANCE RAMAN SPECTRA OF BACTERIORHODOPSIN MUTANTS WITH SUBSTITUTIONS AT ASP‐85, ASP‐96, AND ARG‐82 , 1991, Photochemistry and photobiology.

[43]  R. Efremov,et al.  Quantitative Treatment of UV Resonance Raman Spectra of Biological Molecules: Application to the Study of Membrane-Bound Proteins , 1991 .

[44]  P. Ormos Infrared spectroscopic demonstration of a conformational change in bacteriorhodopsin involved in proton pumping. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[45]  S. R. Bolton,et al.  Ultraviolet resonance raman spectroscopy of bacteriorhodopsin : evidence against tyrosinate in the photocycle , 1990 .

[46]  S. P. Fodor,et al.  ULTRAVIOLET RESONANCE RAMAN SPECTROSCOPY OF BACTERIORHODOPSIN , 1990, Photochemistry and photobiology.

[47]  R. Mathies,et al.  The role of back-reactions and proton uptake during the N----O transition in bacteriorhodopsin's photocycle: a kinetic resonance Raman study. , 1990, Biochemistry.

[48]  J. Sawatzki,et al.  Fourier-transform Raman spectroscopy applied to photobiological systems. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[49]  S. O. Smith,et al.  Solid-state 13C and 15N NMR study of the low pH forms of bacteriorhodopsin. , 1990 .

[50]  M. El-Sayed,et al.  Subpicosecond resonance Raman spectra of the early intermediates in the photocycle of bacteriorhodopsin. , 1990, Biophysical journal.

[51]  T. Noguchi,et al.  Resonance Raman spectra of 13-demethylretinal bacteriorhodopsin and of a picosecond bathochromic photocycle intermediate , 1990 .

[52]  Arno Simon,et al.  NIR-FT-Raman-spectroscopy, state of the art , 1990 .

[53]  I. Harada,et al.  Ultraviolet resonance Raman spectra of bacteriorhodopsin in the light-adapted and dark-adapted states , 1990 .

[54]  G. Atkinson,et al.  Picosecond time-resolved resonance Raman spectrum of the K-590 intermediate in the room temperature bacteriorhodopsin photocycle , 1989 .

[55]  S. P. Fodor,et al.  Structure of the retinal chromophore in sensory rhodopsin I from resonance Raman spectroscopy. , 1989, The Journal of biological chemistry.

[56]  S. P. Fodor,et al.  Bacteriorhodopsin's M412 intermediate contains a 13-cis, 14-s-trans, 15-anti-retinal Schiff base chromophore. , 1989, Biochemistry.

[57]  R. Griffin,et al.  Nuclear magnetic resonance study of the Schiff base in bacteriorhodopsin: counterion effects on the 15N shift anisotropy. , 1989, Biochemistry.

[58]  B. Barry,et al.  Why are blue visual pigments blue? A resonance Raman microprobe study. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[59]  M. Stockburger,et al.  Photochemical quantum yield of bacteriorhodopsin from resonance Raman scattering as a probe for photolysis. , 1989 .

[60]  G. Rumbles,et al.  Picosecond time-resolved resonance Raman spectroscopy of the initial trans to cis isomerization in the bacteriorhodopsin photocycle , 1989 .

[61]  J. Lanyi,et al.  Effects of various anions on the Raman spectrum of halorhodopsin. , 1989, Biophysical journal.

[62]  R. Mathies,et al.  Complete assignment of the hydrogen out-of-plane wagging vibrations of bathorhodopsin: chromophore structure and energy storage in the primary photoproduct of vision. , 1989, Biochemistry.

[63]  W. Stoeckenius,et al.  Retinal isomer ratio in dark-adapted purple membrane and bacteriorhodopsin monomers. , 1989, Biochemistry.

[64]  S. P. Fodor,et al.  Chromophore structure in bacteriorhodopsin's N intermediate: implications for the proton-pumping mechanism. , 1988, Biochemistry.

[65]  R. Mathies,et al.  Excited-state structure and isomerization dynamics of the retinal chromophore in rhodopsin from resonance Raman intensities. , 1988, Biophysical journal.

[66]  P. Tavan,et al.  Wavelength regulation in bacteriorhodopsin and halorhodopsin: A Pariser–Parr–Pople multireference double excitation configuration interaction study of retinal dyes , 1988 .

[67]  S. P. Fodor,et al.  Bacteriorhodopsin's L550 intermediate contains a C14-C15 s-trans-retinal chromophore. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Wolfgang Kaiser,et al.  Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy , 1988 .

[69]  B. Honig,et al.  Analysis of the factors that influence the C=N stretching frequency of polyene Schiff bases. Implications for bacteriorhodopsin and rhodopsin. , 1988, Biophysical journal.

[70]  R. Callender,et al.  A study of the Schiff base mode in bovine rhodopsin and bathorhodopsin. , 1987, Biochemistry.

[71]  R. Callender,et al.  Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin. , 1987, Biochemistry.

[72]  S. P. Fodor,et al.  Structure of the retinal chromophore in the hRL intermediate of halorhodopsin from resonance raman spectroscopy. , 1987, Biochemistry.

[73]  R. Callender,et al.  Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts. , 1987, Biochemistry.

[74]  D. Oesterhelt,et al.  Resonance Raman study of intermediates of the halorhodopsin photocycle , 1987 .

[75]  M. Sheves,et al.  Factors affecting the C = N stretching in protonated retinal Schiff base: a model study for bacteriorhodopsin and visual pigments. , 1987, Biochemistry.

[76]  R. Mathies,et al.  Vibrational analysis of the all-trans-retinal chromophore in light-adapted bacteriorhodopsin , 1987 .

[77]  R. Mathies,et al.  Vibrational analysis of the 13-cis-retinal chromophore in dark-adapted bacteriorhodopsin , 1987 .

[78]  K. Schomacker,et al.  Measurements of the absolute Raman cross sections of benzene , 1986 .

[79]  P. Tavan,et al.  Evidence for a 13,14-cis cycle in bacteriorhodopsin. , 1986, Biophysical journal.

[80]  D. Oesterhelt,et al.  Early picosecond events in the photocycle of bacteriorhodopsin. , 1986, Biophysical journal.

[81]  M. Stockburger,et al.  Structure of bacteriorhodopsin in the acidified membrane and at high ionic strength: resonance Raman study , 1985 .

[82]  P. Roepe,et al.  Fourier transform infrared spectroscopic evidence for the existence of two conformations of the bacteriorhodopsin primary photoproduct at low temperature. , 1985, Biochimica et biophysica acta.

[83]  T. Kitagawa,et al.  Resonance Raman study on binding of chloride to the chromophore of halorhodopsin , 1985 .

[84]  B. Honig,et al.  RESONANCE RAMAN STUDIES OF BACTERIORHODOPSIN ANALOGUES , 1985, Photochemistry and photobiology.

[85]  S. O. Smith,et al.  Vibrational analysis of the all-trans retinal protonated Schiff base. , 1985, Biophysical journal.

[86]  P. Tavan,et al.  The effect of protonation and electrical interactions on the stereochemistry of retinal schiff bases. , 1985, Biophysical journal.

[87]  R. Mathies,et al.  PRIMARY PHOTOCHEMISTRY OF BACTERIORHODOPSIN: COMPARISON OF FOURIER TRANSFORM INFRARED DIFFERENCE SPECTRA WITH RESONANCE RAMAN SPECTRA , 1984, Photochemistry and photobiology.

[88]  P. Hildebrandt,et al.  Role of water in bacteriorhodopsin's chromophore: resonance Raman study , 1984 .

[89]  S. O. Smith,et al.  Structure of the retinal chromophore in the hR578 form of halorhodopsin. , 1984, The Journal of biological chemistry.

[90]  S. O. Smith,et al.  Determination of retinal Schiff base configuration in bacteriorhodopsin. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[91]  R. Mathies,et al.  Chromophore structure in bacteriorhodopsin's O640 photointermediate , 1983 .

[92]  B. Honig,et al.  Correlation of vibrational frequencies with absorption maxima in polyenes, rhodopsin, bacteriorhodopsin, and retinal analogs , 1983 .

[93]  Robert A. Harris,et al.  Resonance Raman excitation profiles of bacteriorhodopsin , 1983 .

[94]  M. El-Sayed,et al.  TIME‐RESOLVED RESONANCE RAMAN SPECTROSCOPY OF THE BACTERIORHODOPSIN PHOTOCYCLE ON THE PICOSECOND AND NANOSECOND TIME SCALES , 1983 .

[95]  R. Birge,et al.  Energy storage in the primary step of the photocycle of bacteriorhodopsin. , 1983, Biophysical journal.

[96]  D. Oesterhelt,et al.  Structural conclusion on the Schiff base group of retinylidene chromophores in bacteriorhodopsin from characteristic vibrational bands in the resonance Raman spectra of BR570 (all‐trans), BR603 (3‐dehydroretinal) and BR548 (13‐cis) , 1982 .

[97]  R. Mathies,et al.  Assignment and interpretation of hydrogen out-of-plane vibrations in the resonance Raman spectra of rhodopsin and bathorhodopsin. , 1982, Biochemistry.

[98]  M. El-Sayed,et al.  Picosecond and nanosecond resonance Raman studies of bacteriorhodopsin. Do configurational changes of retinal occur in picoseconds , 1981 .

[99]  B. Honig,et al.  On the mechanism of hydrogen-deuterium exchange in bacteriorhodopsin. , 1981, Biophysical journal.

[100]  B. Honig,et al.  An external point-charge model for bacteriorhodopsin to account for its purple color , 1980 .

[101]  R. Callender,et al.  ON THE STATE OF CHROMOPHORE PROTONATION IN RHODOPSIN: IMPLICATION FOR PRIMARY PHOTOCHEMISTRY IN VISUAL PIGMENTS , 1980, Photochemistry and photobiology.

[102]  Michael G. Motto,et al.  An external point-charge model for wavelength regulation in visual pigments , 1979 .

[103]  R. Peters,et al.  Photochemical cycle of bacteriorhodopsin studied by resonance Raman spectroscopy. , 1979, Biochemistry.

[104]  F. W. Schneider,et al.  Resonance cars spectroscopy of bacteriorhodopsin , 1979 .

[105]  M. El-Sayed,et al.  Time-resolved resonance Raman spectroscopy of intermediates of bacteriorhodopsin: The bK(590) intermediate. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[106]  B. Honig,et al.  Photoisomerization, energy storage, and charge separation: a model for light energy transduction in visual pigments and bacteriorhodopsin. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[107]  M. El-Sayed,et al.  Time-resolved resonance Raman characterization of the bL550 intermediate and the two dark-adapted bRDA/560 forms of bacteriorhodopsin. , 1979, Biophysical journal.

[108]  M. Stockburger,et al.  Polarized resonance Raman spectra of an oriented diphenylpolyene , 1979 .

[109]  A. Lewis,et al.  Resonance Raman spectroscopy of the retinylidene chromophore in bacteriorhodopsin (bR570), bR560, M421, and other intermediates: structural conclusions based on kinetics, analogues, models, and isotopically labeled membranes. , 1978, Biochemistry.

[110]  M. El-Sayed,et al.  Time-resolved resonance Raman characterization of the intermediates of bacteriorhodopsin. , 1978, Biophysical journal.

[111]  U. Lachish,et al.  TIME RESOLUTION OF A BACK PHOTOREACTION IN BACTERIORHODOPSIN , 1978 .

[112]  A. B. Harvey,et al.  Coherent anti-Stokes Raman spectroscopy , 1978 .

[113]  R. Callender,et al.  Resonance Raman studies of bovine metarhodopsin I and metarhodopsin II. , 1978, Biochemistry.

[114]  J. Hurley,et al.  Energy transfer in the purple membrane of Halobacterium halobium. , 1978, Biophysical journal.

[115]  A. Lewis,et al.  Resonance Raman spectroscopy of chemically modified retinals: assigning the carbon--methyl vibrations in the resonance Raman spectrum of rhodopsin. , 1978, Journal of molecular biology.

[116]  P. Tavan,et al.  A mechanism for the light-driven proton pump of Halobacterium halobium , 1978, Nature.

[117]  M. El-Sayed,et al.  Resonance Raman kinetic spectroscopy of bacteriorhodopsin on the microsecond time scale. , 1977, Biophysical journal.

[118]  M. El-Sayed,et al.  Time-resolved resonance Raman spectroscopy of bacteriorhodopsin on the millisecond timescale. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[119]  A. Lewis,et al.  Physiological and structural investigations of bacteriorhodopsin analogs. , 1977, Biochemical and biophysical research communications.

[120]  W. Peticolas,et al.  Ultraviolet resonant Raman spectroscopy of nucleic acid components. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[121]  R. Callender,et al.  Resonance Raman studies of the purple membrane. , 1977, Biochemistry.

[122]  A. Warshel,et al.  Calculations of resonance Raman spectra of conjugated molecules , 1977 .

[123]  B. Honig,et al.  Visual-pigment spectra: implications of the protonation of the retinal Schiff base. , 1976, Biochemistry.

[124]  K. Nakanishi,et al.  Molecular flow resonance Raman effect from retinal and rhodopsin. , 1976, Biochemistry.

[125]  F. Inagaki,et al.  Vibrational analysis of polyene chains. Assignments of the resonance Raman lines of poly (acetylene) and β‐carotene , 1975 .

[126]  W. Stoeckenius,et al.  Tunable laser resonance raman spectroscopy of bacteriorhodopsin. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[127]  A. Oseroff,et al.  Resonance Raman spectroscopy of rhodopsin in retinal disk membranes. , 1974, Biochemistry.

[128]  M. Stockburger,et al.  Quantum yields of resonance Raman scattering in the case of 1,1,14,14 tetraphenyltetradecaheptaene , 1973 .

[129]  R. Mendelsohn Resonance Raman Spectroscopy of the Photoreceptor-like Pigment of Halobacterium halobium , 1973, Nature.

[130]  N. Bloembergen,et al.  Interactions between light waves in a nonlinear dielectric , 1962 .

[131]  W. Eisfeld,et al.  The Photocycle of the Bacteriorhodopsin Mutant ASP96→ASN Studied by Time-Resolved Resonance-Raman and Optical Transient Spectroscopy , 1994 .

[132]  W. Eisfeld,et al.  Light-Induced Reaction Sequence of the Chromophore in Bacteriorhodopsin Studied by Time-Resolved RR Spectroscopy , 1994 .

[133]  G. Atkinson,et al.  Picosecond-Resonance Coherent Anti-Stokes Raman Scattering in Biophysics: Power Dependence in the Bacteriorhodopsin Photocycle , 1994 .

[134]  G. Atkinson,et al.  Picosecond Resonance Coherent Anti‐Stokes Raman Spectroscopy of Light‐ and Dark‐Adapted Bacteriorhodopsin , 1993 .

[135]  F. Siebert,et al.  Chromophore and Protein Reactions of Bacteriorhodopsin Studied by Sub-Microsecond Time-Resolved Step-Scan FTIR Spectroscopy , 1992 .

[136]  H. Takeuchi,et al.  Structural Variety of Bacteriorhodopsin , 1992 .

[137]  W. Gärtner,et al.  Quantum yields of the photochromic equilibrium between bacteriorhodopsin and its bathointermediate K. Femto- and nanosecond optoacoustic spectroscopy , 1992 .

[138]  R A Mathies,et al.  From femtoseconds to biology: mechanism of bacteriorhodopsin's light-driven proton pump. , 1991, Annual review of biophysics and biophysical chemistry.

[139]  R. Birge Photophysics and molecular electronic applications of the rhodopsins. , 1990, Annual review of physical chemistry.

[140]  F. Siebert Resonance Raman and infrared difference spectroscopy of retinal proteins. , 1990, Methods in enzymology.

[141]  P. Tavan,et al.  Quantum chemical vibrational analysis of the chromophore of bacteriorhodopsin , 1990 .

[142]  S. Asher UV resonance Raman studies of molecular structure and dynamics: applications in physical and biophysical chemistry. , 1988, Annual review of physical chemistry.

[143]  T. Spiro,et al.  Applications of ultraviolet resonance raman spectroscopy to proteins , 1988 .

[144]  CalderwoodStanford Managing Investment Style , 1988 .

[145]  M. Stockburger,et al.  A New Intermediate in the Photocycle of Bacteriorhodopsin , 1987 .

[146]  R. Mathies,et al.  Picosecond and Nanosecond Resonance Raman Evidence for Structural Relaxation in Bacteriorhodopsin's Primary Photoproduct , 1985 .

[147]  P. Hegemann,et al.  Structure of the retinal chromophore in halorhodopsin , 1985 .

[148]  A. Lewis RESONANCE COHERENT ANTI-STOKES RAMAN SPECTROSCOPY OF THE K INTERMEDIATE IN THE BACTERIORHODOPSIN PHOTOCYCLE , 1983 .

[149]  R. Mathies,et al.  Resonance Raman spectra of bacteriorhodopsin's primary photoproduct: evidence for a distorted 13-cis retinal chromophore. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[150]  B. Honig,et al.  Resonance Raman studies of the primary photochemical event in visual pigments. , 1980, Biophysical journal.

[151]  R. Callender Resonance Raman studies of visual pigments. , 1977, Annual review of biophysics and bioengineering.

[152]  A. Oseroff,et al.  Rapid-flow resonance Raman spectroscopy of photolabile molecules: rhodopsin and isorhodopsin. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[153]  A. C. Albrecht,et al.  Developments in the Theories of Vibrational Raman Intensities , 1970 .