Multiclass Fruit Classification of RGB-D Images Using Color and Texture Feature

Fruit classification under varying pose is still a complicated task due to various properties of numerous types of fruit. In this paper we propose fruit classification method with a novel descriptor as a combination of color and texture feature. Color feature is extracted from segmented fruit image using Color Layout Descriptor, while texture feature is extracted using Edge Histogram Descriptor. Support Vector Machine (SVM) with linear and RBF kernel is used as classifier with 10-fold cross validation. The experimental results demonstrated that our descriptor achieves classification accuracy of over 93.09 % for fruit subcategory and 100 % for fruit category from over 4200 images in varying pose.

[1]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[2]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[3]  Hamid A. Jalab,et al.  Image retrieval system based on color layout descriptor and Gabor filters , 2011, 2011 IEEE Conference on Open Systems.

[4]  C. Lawrence Zitnick,et al.  The role of features, algorithms and data in visual recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Miguel Tavares Coimbra,et al.  MPEG-7 Visual Descriptors—Contributions for Automated Feature Extraction in Capsule Endoscopy , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[6]  Husniza Husni,et al.  A weighted dominant color descriptor for content-based image retrieval , 2013, J. Vis. Commun. Image Represent..

[7]  J.-P. Renno,et al.  Evaluation of MPEG7 color descriptors for visual surveillance retrieval , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[8]  Shih-Fu Chang,et al.  Overview of the MPEG-7 standard , 2001, IEEE Trans. Circuits Syst. Video Technol..

[9]  Dieter Fox,et al.  A large-scale hierarchical multi-view RGB-D object dataset , 2011, 2011 IEEE International Conference on Robotics and Automation.

[10]  R. N. Shebiah,et al.  Fruit Recognition using Color and Texture Features , 2010 .

[11]  Sung Min Kim,et al.  Image Retrieval via Query-by-Layout Using MPEG-7 Visual Descriptors , 2007 .

[12]  Md. Monirul Islam,et al.  A review on automatic image annotation techniques , 2012, Pattern Recognit..

[13]  Jacques Wainer,et al.  Automatic fruit and vegetable classification from images , 2010 .

[14]  Akio Yamada,et al.  The MPEG-7 color layout descriptor: a compact image feature description for high-speed image/video segment retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[15]  Xin Zhang,et al.  Object class detection: A survey , 2013, CSUR.

[16]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[17]  Daniel E. Guyer,et al.  Evaluation of different pattern recognition techniques for apple sorting , 2008 .

[18]  Thomas Sikora,et al.  The MPEG-7 visual standard for content description-an overview , 2001, IEEE Trans. Circuits Syst. Video Technol..

[19]  Seyed Hadi Mirisaee,et al.  A new method for fruits recognition system , 2009, 2009 International Conference on Electrical Engineering and Informatics.

[20]  Ricardo da Silva Torres,et al.  Evaluating Retrieval Effectiveness of Descriptors for Searching in Large Image Databases , 2011, J. Inf. Data Manag..

[21]  Horst M. Eidenberger,et al.  How good are the visual MPEG-7 features? , 2003, Visual Communications and Image Processing.

[22]  Andreas Zell,et al.  Multi-class fruit classification using RGB-D data for indoor robots , 2013, 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO).