Travelling waves and conservation laws of a (2+1)-dimensional coupling system with Korteweg-de Vries equation

Abstract In this paper we study a (2+1)-dimensional coupling system with the Korteweg-de Vries equation, which is associated with non-semisimple matrix Lie algebras. Its Lax-pair and bi-Hamiltonian formulation were obtained and presented in the literature. We utilize Lie symmetry analysis along with the (G′/G)–expansion method to obtain travelling wave solutions of this system. Furthermore, conservation laws are constructed using the multiplier method.

[1]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[2]  H. Steudel Über die Zuordnung zwischen lnvarianzeigenschaften und Erhaltungssätzen , 1962 .

[3]  J. Meinhardt,et al.  Symmetries and differential equations , 1981 .

[4]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[5]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[6]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[7]  Wen-Xiu Ma,et al.  THE BI-HAMILTONIAN STRUCTURE OF THE PERTURBATION EQUATIONS OF THE KDV HIERARCHY , 1996 .

[8]  B. Fuchssteiner,et al.  Integrable theory of the perturbation equations , 1996, solv-int/9604004.

[9]  Mingliang Wang,et al.  Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics , 1996 .

[10]  Zuntao Fu,et al.  JACOBI ELLIPTIC FUNCTION EXPANSION METHOD AND PERIODIC WAVE SOLUTIONS OF NONLINEAR WAVE EQUATIONS , 2001 .

[11]  Jianlan Hu,et al.  A new method for finding exact traveling wave solutions to nonlinear partial differential equations , 2001 .

[12]  Stephen C. Anco,et al.  Direct construction method for conservation laws of partial differential equations Part I: Examples of conservation law classifications , 2001, European Journal of Applied Mathematics.

[13]  W. Ma A bi-Hamiltonian formulation for triangular systems by perturbations , 2001, nlin/0112009.

[14]  Chun-Xia Li A Hierarchy of Coupled Korteweg-de Vries Equations and the Corresponding Finite-Dimensional Integrable System , 2004 .

[15]  Nikolai A. Kudryashov,et al.  Exact solitary waves of the Fisher equation , 2005 .

[16]  Zhen-yun Qin A finite-dimensional integrable system related to a new coupled KdV hierarchy , 2006 .

[17]  Alexei F. Cheviakov,et al.  GeM software package for computation of symmetries and conservation laws of differential equations , 2007, Comput. Phys. Commun..

[18]  Mingliang Wang,et al.  The (G' G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics , 2008 .

[19]  A. Wazwaz Partial Differential Equations and Solitary Waves Theory , 2009 .

[20]  Deng-Shan Wang,et al.  Integrability of a coupled KdV system: Painlevé property, Lax pair and Bäcklund transformation , 2010, Appl. Math. Comput..

[21]  D. Korteweg,et al.  On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 2011 .

[22]  Abdul-Majid Wazwaz,et al.  Integrability of coupled KdV equations , 2011 .

[23]  A. Wazwaz,et al.  Solitons and Periodic Wave Solutions for Coupled Nonlinear Equations , 2012 .

[24]  Nikolai A. Kudryashov,et al.  One method for finding exact solutions of nonlinear differential equations , 2011, 1108.3288.

[25]  Chaudry Masood Khalique,et al.  On the solutions and conservation laws of a coupled KdV system , 2012, Appl. Math. Comput..

[26]  Zai-yun Zhang JACOBI ELLIPTIC FUNCTION EXPANSION METHOD FOR THE MODIFIED KORTEWEG-DE VRIES-ZAKHAROV-KUZNETSOV AND THE HIROTA EQUATIONS , 2015 .

[27]  A. Fatima,et al.  Noether symmetries and exact solutions of an Euler–Bernoulli beam model , 2016 .

[28]  M. Rosa,et al.  Multiplier method and exact solutions for a density dependent reaction-diffusion equation , 2016 .

[29]  Lena Vogler,et al.  The Direct Method In Soliton Theory , 2016 .

[30]  M. Bruzón,et al.  On the classical and nonclassical symmetries of a generalized Gardner equation , 2016 .

[31]  Chaudry Masood Khalique,et al.  Conservation laws and solutions of a generalized coupled (2+1)-dimensional Burgers system , 2017, Comput. Math. Appl..

[32]  T. Motsepa,et al.  Classical model of Prandtl's boundary layer theory for radial viscous flow: application of (G'/G)- expansion method , 2017 .

[33]  Maria Luz Gandarias,et al.  Classical symmetries, travelling wave solutions and conservation laws of a generalized Fornberg-Whitham equation , 2017, J. Comput. Appl. Math..

[34]  Chaudry Masood Khalique,et al.  Symmetry Analysis and Conservation Laws of the Zoomeron Equation , 2017, Symmetry.

[35]  M. Bruzón,et al.  Conservation laws for a Boussinesq equation. , 2017 .

[36]  Maria Luz Gandarias,et al.  Classical and potential symmetries for a generalized Fisher equation , 2017, J. Comput. Appl. Math..

[37]  C. M. Khalique,et al.  Travelling wave solutions and conservation laws for the Korteweg-de Vries-Bejamin-Bona-Mahony equation , 2018 .

[38]  T. Motsepa,et al.  On the conservation laws and solutions of a (2+1) dimensional KdV-mKdV equation of mathematical physics , 2018 .