A simulated annealing approach to the multiconstraint zero-one knapsack problem

The multiconstraint 0–1 knapsack problem encounters when deciding how to use a knapsack with multiple resource constraints. The problem is known to be NP-hard, thus a “good” algorithm for its optimal solution is very unlikely to exist. We show how the concept of simulated annealing may be used for solving this problem approximately. 57 data sets from literature demonstrate, that the algorithm converges very rapidly towards the optimum solution.ZusammenfassungMehrfach beschränkte binäre Knapsack-Probleme erfordern Engpaßentscheidungen unter Berücksichtigung zahlreicher Ressourcenbeschränkungen. Angesichts der NP-Schwierigkeit ist die Existenz eines „guten” Optimierungsverfahrens zu seiner Lösung sehr unwahrescheinlich. Wir zeigen, wie das Problem mit Hilfe des Konzeptes der simulierten Abkühlung näherungsweise gelöst werden kann. 57 Datensätze aus der Literatur verdeutlichen, daß das Verfahren sehr schnell gegen die optimale Lösung konvergiert.

[1]  E. Balas,et al.  Pivot and Complement–A Heuristic for 0-1 Programming , 1980 .

[2]  T. Liebling,et al.  Probabilistic exchange algorithms and Euclidean traveling salesman problems , 1986 .

[3]  Osman Oguz,et al.  A heuristic algorithm for the multidimensional zero-one knapsack problem , 1984 .

[4]  Thomas M. Liebling,et al.  Reconstruction of polycrystalline structures: a new application of combinatorial optimization , 2005, Computing.

[5]  A. Frieze,et al.  Approximation algorithms for the m-dimensional 0–1 knapsack problem: Worst-case and probabilistic analyses , 1984 .

[6]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[7]  Richard Loulou,et al.  New Greedy-Like Heuristics for the Multidimensional 0-1 Knapsack Problem , 1979, Oper. Res..

[8]  Y. Toyoda A Simplified Algorithm for Obtaining Approximate Solutions to Zero-One Programming Problems , 1975 .

[9]  Clifford C. Petersen,et al.  Computational Experience with Variants of the Balas Algorithm Applied to the Selection of R&D Projects , 1967 .

[10]  L. J. Savage,et al.  Three Problems in Rationing Capital , 1955 .

[11]  F. Rendl,et al.  A thermodynamically motivated simulation procedure for combinatorial optimization problems , 1984 .

[12]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[13]  Jean-Luc Lutton,et al.  The asymptotic behaviour of quadratic sum assignment problems: A statistical mechanics approach , 1986 .

[14]  Egon Balas,et al.  An Algorithm for Large Zero-One Knapsack Problems , 1980, Oper. Res..

[15]  S. Senju,et al.  An Approach to Linear Programming with 0--1 Variables , 1968 .

[16]  Thomas M. Liebling,et al.  Euclidean matching problems and the metropolis algorithm , 1986, Z. Oper. Research.

[17]  E. Balas,et al.  Solving Large Zero-One Knapsack Problems. , 1977 .

[18]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[19]  John Beidler,et al.  Data Structures and Algorithms , 1996, Wiley Encyclopedia of Computer Science and Engineering.

[20]  A. Fréville,et al.  Heuristics and reduction methods for multiple constraints 0-1 linear programming problems , 1986 .

[21]  Wei Shih,et al.  A Branch and Bound Method for the Multiconstraint Zero-One Knapsack Problem , 1979 .

[22]  Hasan Pirkul,et al.  Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality , 1985, Math. Program..