Genetic and cellular basis of cerebral cavernous malformations: implications for clinical management

Bacigaluppi S, Retta SF, Pileggi S, Fontanella M, Goitre L, Tassi L, La Camera A, Citterio A, Patrosso MC, Tredici G, Penco S. Genetic and cellular basis of cerebral cavernous malformations: implications for clinical management.

[1]  V. Capra,et al.  De Novo MGC4607 Gene Heterozygous Missense Variants in a Child with Multiple Cerebral Cavernous Malformations , 2012, Journal of Molecular Neuroscience.

[2]  R. Shenkar,et al.  Fasudil Decreases Lesion Burden in a Murine Model of Cerebral Cavernous Malformation Disease , 2012, Stroke.

[3]  D. Garbossa,et al.  Brain Arteriovenous Malformations Are Associated With Interleukin-1 Cluster Gene Polymorphisms , 2012, Neurosurgery.

[4]  N. Chi,et al.  Ccm3 functions in a manner distinct from Ccm1 and Ccm2 in a zebrafish model of CCM vascular disease. , 2011, Developmental biology.

[5]  Amber N. Stratman,et al.  Mutations in 2 distinct genetic pathways result in cerebral cavernous malformations in mice. , 2011, The Journal of clinical investigation.

[6]  F. Faraci Protecting against vascular disease in brain. , 2011, American journal of physiology. Heart and circulatory physiology.

[7]  M. Avolio,et al.  Mutation Analysis of CCM1, CCM2 and CCM3 Genes in a Cohort of Italian Patients with Cerebral Cavernous Malformation , 2011, Brain pathology.

[8]  W. Min,et al.  Loss of cerebral cavernous malformation 3 (Ccm3) in neuroglia leads to CCM and vascular pathology , 2011, Proceedings of the National Academy of Sciences.

[9]  J. Schramm,et al.  Cerebral cavernous malformations and intractable epilepsy: the limited usefulness of current literature , 2011, Acta Neurochirurgica.

[10]  R. Kucherlapati,et al.  A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease. , 2011, Human molecular genetics.

[11]  U. Felbor,et al.  Evidence for anti-angiogenic and pro-survival functions of the cerebral cavernous malformation protein 3 , 2010, neurogenetics.

[12]  R. Shenkar,et al.  Cerebral cavernous malformations as a disease of vascular permeability: from bench to bedside with caution. , 2010, Neurosurgical focus.

[13]  G. Zipfel,et al.  Update on the natural history of cavernous malformations and factors predicting aggressive clinical presentation. , 2010, Neurosurgical focus.

[14]  I. Awad,et al.  Emerging clinical imaging techniques for cerebral cavernous malformations: a systematic review. , 2010, Neurosurgical focus.

[15]  L. Muscarella,et al.  Small Deletion at the 7q21.2 Locus in a CCM Family Detected by Real-Time Quantitative PCR , 2010, Journal of biomedicine & biotechnology.

[16]  P. Degan,et al.  KRIT1 Regulates the Homeostasis of Intracellular Reactive Oxygen Species , 2010, PloS one.

[17]  Ulrich Sure,et al.  Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling , 2010, Proceedings of the National Academy of Sciences.

[18]  G. Vaula,et al.  Interleukin‐1 Cluster Gene Polymorphisms and Aneurysmal Subarachnoid Hemorrhage , 2010, Neurosurgery.

[19]  C. Filippi,et al.  Magnetic resonance diffusion tensor imaging and tractography of intracranial cavernous malformations: preliminary observations and characterization of the hemosiderin rim. , 2010, Journal of neurosurgery.

[20]  E. Faurobert Recent insights into cerebral cavernous malformations , 2010, The FEBS Journal.

[21]  Dean Y. Li,et al.  Recent insights into cerebral cavernous malformations: animal models of CCM and the human phenotype , 2010, The FEBS journal.

[22]  E. Tournier-Lasserve,et al.  Recent insights into cerebral cavernous malformations: the molecular genetics of CCM , 2010, The FEBS journal.

[23]  L. Morrison,et al.  Familial versus Sporadic Cavernous Malformations: Differences in Developmental Venous Anomaly Association and Lesion Phenotype , 2010, American Journal of Neuroradiology.

[24]  E. Tournier-Lasserve,et al.  Frequency and phenotypes of cutaneous vascular malformations in a consecutive series of 417 patients with familial cerebral cavernous malformations , 2009, Journal of the European Academy of Dermatology and Venereology : JEADV.

[25]  J. Gault,et al.  CEREBRAL CAVERNOUS MALFORMATIONS: SOMATIC MUTATIONS IN VASCULAR ENDOTHELIAL CELLS , 2009, Neurosurgery.

[26]  R. Shenkar,et al.  Immune response in human cerebral cavernous malformations. , 2009, Stroke.

[27]  L. Tassi,et al.  Molecular screening test in familial forms of cerebral cavernous malformation: the impact of the Multiplex Ligation-dependent Probe Amplification approach. , 2009, Journal of neurosurgery.

[28]  Shawn M. Sweeney,et al.  Erratum: Regulation of cardiovascular development and integrity by the heart of glass- cerebral cavernous malformation protein pathway (Natural Medical (2007) 15 (169-176)) , 2009 .

[29]  C. Leffler,et al.  Nox4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF‐alpha in cerebral vascular endothelial cells. , 2009, American journal of physiology. Cell physiology.

[30]  G. Steinberg,et al.  Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis. , 2009, Human molecular genetics.

[31]  Cam Patterson Torturing a blood vessel , 2009, Nature Network Boston.

[32]  Christopher A. Jones,et al.  The Cerebral Cavernous Malformation signaling pathway promotes vascular integrity via Rho GTPases , 2009, Nature Medicine.

[33]  M. Avolio,et al.  Structural and functional differences between KRIT1A and KRIT1B isoforms: a framework for understanding CCM pathogenesis. , 2009, Experimental cell research.

[34]  U. Felbor,et al.  A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of CCM1, CCM2 or CCM3 in affected endothelial cells , 2008, Human molecular genetics.

[35]  F. Faraci,et al.  The role of oxidative stress and NADPH oxidase in cerebrovascular disease. , 2008, Trends in molecular medicine.

[36]  A. Ciccodicola,et al.  ZPLD1 gene is disrupted in a patient with balanced translocation that exhibits cerebral cavernous malformations , 2008, Neuroscience.

[37]  U. Laufs,et al.  Antioxidative effects of statins , 2008, Archives of Toxicology.

[38]  H. Luhmann,et al.  Fluvastatin prevents glutamate-induced blood-brain-barrier disruption in vitro. , 2008, Life sciences.

[39]  O. Sürücü,et al.  Novel CCM1, CCM2, and CCM3 mutations in patients with cerebral cavernous malformations: in‐frame deletion in CCM2 prevents formation of a CCM1/CCM2/CCM3 protein complex , 2008, Human mutation.

[40]  F. Gianfrancesco,et al.  Different spectra of genomic deletions within the CCM genes between Italian and American CCM patient cohorts , 2008, Neurogenetics.

[41]  R. Gautier,et al.  Krit 1 interactions with microtubules and membranes are regulated by Rap1 and integrin cytoplasmic domain associated protein‐1 , 2007, The FEBS journal.

[42]  M. Ginsberg,et al.  KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell–cell junctions , 2007, The Journal of cell biology.

[43]  T. Haystead,et al.  Proteomic identification of the cerebral cavernous malformation signaling complex. , 2007, Journal of proteome research.

[44]  U. Felbor,et al.  CCM3 interacts with CCM2 indicating common pathogenesis for cerebral cavernous malformations , 2007, Neurogenetics.

[45]  E. Tournier-Lasserve,et al.  Genetics of cavernous angiomas , 2007, The Lancet Neurology.

[46]  E. Vicaut,et al.  Genotype–phenotype correlations in cerebral cavernous malformations patients , 2006, Annals of neurology.

[47]  N. Petit,et al.  Patterns of expression of the three cerebral cavernous malformation (CCM) genes during embryonic and postnatal brain development. , 2006, Gene expression patterns : GEP.

[48]  V. Krivosic,et al.  Frequency of retinal cavernomas in 60 patients with familial cerebral cavernomas: a clinical and genetic study. , 2006, Archives of ophthalmology.

[49]  P. Kwok,et al.  Interleukin‐6 involvement in brain arteriovenous malformations , 2006, Annals of neurology.

[50]  Pui-Yan Kwok,et al.  Tumor Necrosis Factor-&agr;–238G>A Promoter Polymorphism Is Associated With Increased Risk of New Hemorrhage in the Natural Course of Patients With Brain Arteriovenous Malformations , 2006 .

[51]  C. Elger,et al.  CCM3 mutations are uncommon in cerebral cavernous malformations , 2005, Neurology.

[52]  B. O’Roak,et al.  Mutations in Apoptosis-related Gene, PDCD10, Cause Cerebral Cavernous Malformation 3 , 2005, Neurosurgery.

[53]  M. Morgan,et al.  Ultrastructural characteristics of hemorrhagic, nonhemorrhagic, and recurrent cavernous malformations. , 2005, Journal of neurosurgery.

[54]  D. Marchuk,et al.  CCM1 and CCM2 protein interactions in cell signaling: implications for cerebral cavernous malformations pathogenesis. , 2005, Human molecular genetics.

[55]  I. Awad,et al.  Intracranial cavernous angioma: a practical review of clinical and biological aspects. , 2005, Surgical neurology.

[56]  W. Heiss,et al.  Value of gradient-echo magnetic resonance imaging in the diagnosis of familial cerebral cavernous malformation. , 2005, Archives of neurology.

[57]  F. Faraci Oxidative stress: the curse that underlies cerebral vascular dysfunction? , 2005, Stroke.

[58]  P. Frérebeau,et al.  Mutations within the MGC4607 gene cause cerebral cavernous malformations. , 2004, American journal of human genetics.

[59]  C. Liquori,et al.  Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. , 2003, American journal of human genetics.

[60]  M. Dell'Acqua,et al.  Rac–MEKK3–MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock , 2003, Nature Cell Biology.

[61]  K. Chu,et al.  Cerebral cavernous malformations with dynamic and progressive course: correlation study with vascular endothelial growth factor. , 2003, Archives of neurology.

[62]  D. Marchuk,et al.  Vascular morphogenesis: tales of two syndromes. , 2003, Human molecular genetics.

[63]  D. Zwijnenburg,et al.  Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. , 2002, Nucleic acids research.

[64]  Erica A Golemis,et al.  KRIT1 association with the integrin-binding protein ICAP-1: a new direction in the elucidation of cerebral cavernous malformations (CCM1) pathogenesis. , 2002, Human molecular genetics.

[65]  D. Chang,et al.  Interaction between krit1 and icap1alpha infers perturbation of integrin beta1-mediated angiogenesis in the pathogenesis of cerebral cavernous malformation. , 2001, Human molecular genetics.

[66]  B. Crain,et al.  Ultrastructural and immunocytochemical evidence that an incompetent blood-brain barrier is related to the pathophysiology of cavernous malformations , 2001, Journal of neurology, neurosurgery, and psychiatry.

[67]  A. Siegel,et al.  Endothelial proliferation, neoangiogenesis, and potential de novo generation of cerebrovascular malformations. , 2001, Journal of neurosurgery.

[68]  M. Lucas,et al.  Germline mutations in the CCM1 gene, encoding Krit1, cause cerebral cavernous malformations , 2001, Annals of neurology.

[69]  I. Awad,et al.  Ultrastructural pathological features of cerebrovascular malformations: a preliminary report. , 2000, Neurosurgery.

[70]  J. W. Thomas,et al.  Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). , 1999, Human molecular genetics.

[71]  A. Joutel,et al.  Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas , 1999, Nature Genetics.

[72]  Yugang Wang,et al.  cDNA cloning and expression of an apoptosis-related gene, humanTFAR15 gene , 1999, Science in China Series C: Life Sciences.

[73]  R. Scott,et al.  Multilocus linkage identifies two new loci for a mendelian form of stroke, cerebral cavernous malformation, at 7p15-13 and 3q25.2-27. , 1998, Human molecular genetics.

[74]  J. Testa,et al.  Association of Krev-1/rap1a with Krit1, a novel ankyrin repeat-containing protein encoded by a gene mapping to 7q21-22 , 1997, Oncogene.

[75]  D. Kondziolka,et al.  The natural history of cerebral cavernous malformations. , 1995, Journal of neurosurgery.

[76]  I. Awad,et al.  Mapping a gene causing cerebral cavernous malformation to 7q11.2-q21. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[77]  J. Weber,et al.  A gene responsible for cavernous malformations of the brain maps to chromosome 7q. , 1995, Human molecular genetics.

[78]  R F Spetzler,et al.  The natural history of familial cavernous malformations: results of an ongoing study. , 1994, Journal of neurosurgery.

[79]  John R. Robinson,et al.  Natural history of the cavernous angioma. , 1991, Journal of neurosurgery.

[80]  A. Elster,et al.  An analysis of the natural history of cavernous angiomas. , 1991, Journal of neurosurgery.

[81]  M. Hadley,et al.  Cerebral cavernous malformations. Incidence and familial occurrence. , 1988, The New England journal of medicine.

[82]  M. Hadley,et al.  The MRI appearance of cavernous malformations (angiomas). , 1987, Journal of neurosurgery.

[83]  A. Knudson Mutation and cancer: statistical study of retinoblastoma. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[84]  S. White,et al.  The many faces of MLPA. , 2011, Methods in molecular biology.

[85]  M. Lampugnani,et al.  Combinatorial interaction between CCM pathway genes precipitates hemorrhagic stroke , 2008 .

[86]  Pui-Yan Kwok,et al.  Tumor necrosis factor-alpha-238G>A promoter polymorphism is associated with increased risk of new hemorrhage in the natural course of patients with brain arteriovenous malformations. , 2006, Stroke.

[87]  M. Clanet,et al.  Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. , 2005, American journal of human genetics.

[88]  D. Marchuk,et al.  Genetics of cerebral cavernous malformations , 2005, Current neurology and neuroscience reports.

[89]  P. Frérebeau,et al.  Mutations within the MGC 4607 Gene Cause Cerebral Cavernous Malformations , 2004 .

[90]  B. Rilliet,et al.  [131 cases of cavernous angioma (cavernomas) of the CNS, discovered by retrospective analysis of 24,535 autopsies]. , 1989, Neuro-Chirurgie.