Implementation of Discretized Gabor Frames and Their Duals
暂无分享,去创建一个
[1] I. J. Schoenberg. On Pólya Frequency Functions , 1988 .
[2] O. Christensen,et al. Approximation of the Inverse Frame Operator and Applications to Gabor Frames , 2000 .
[3] T. Strohmer. Approximation of Dual Gabor Frames, Window Decay, and Wireless Communications , 2000, math/0010244.
[4] Helmut Bölcskei,et al. Design of pulse shaping OFDM/OQAM systems for high data-rate transmission over wireless channels , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).
[5] Nicki Holighaus,et al. The Large Time-Frequency Analysis Toolbox 2.0 , 2013, CMMR.
[6] P. C. Russell,et al. Extraction of information from acoustic vibration signals using Gabor transform type devices , 1998 .
[7] Manfred Martin Hartmann,et al. Analysis, Optimization, and Implementation of Low-Interference Wireless Multicarrier Systems , 2007, IEEE Transactions on Wireless Communications.
[8] K. Grōchenig,et al. Gabor Frames and Totally Positive Functions , 2011, 1104.4894.
[9] W. Marsden. I and J , 2012 .
[10] Amos Ron,et al. Exponential box splines , 1988 .
[11] Blanco,et al. Time-frequency analysis of electroencephalogram series. II. Gabor and wavelet transforms. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[12] Peter L. Søndergaard,et al. Gabor frames by sampling and periodization , 2007, Adv. Comput. Math..
[13] Helmut Boelcskei. Efficient design of pulse-shaping filters for OFDM systems , 1999, Optics & Photonics.
[14] A. Aldroubi,et al. SLANTED MATRICES, BANACH FRAMES, AND SAMPLING , 2007, 0705.4304.
[15] Karlheinz Gröchenig,et al. Convergence Analysis of the Finite Section Method and Banach Algebras of Matrices , 2010 .
[16] Nira Dyn,et al. Recurrence relations for Tchebycheffian B-splines , 1988 .
[17] Karlheinz Gröchenig,et al. Discretized Gabor Frames of Totally Positive Functions , 2013, IEEE Transactions on Information Theory.
[18] Peter L. Søndergaard,et al. Iterative Algorithms to Approximate Canonical Gabor Windows: Computational Aspects , 2006 .
[19] Zeros of the Zak Transform of Totally Positive Functions , 2014, 1411.1539.
[20] Monika Dörfler,et al. Time-Frequency Analysis for Music Signals: A Mathematical Approach , 2001 .
[21] Peter Massopust,et al. Exponential B-splines and the partition of unity property , 2012, Adv. Comput. Math..
[22] K. A. Narayanankutty,et al. Spectrally Efficient Multi-Carrier Modulation Using Gabor Transform , 2013 .
[23] Yonina C. Eldar,et al. Dual Gabor frames: theory and computational aspects , 2005, IEEE Transactions on Signal Processing.
[24] Karlheinz Gröchenig,et al. Acceleration of the frame algorithm , 1993, IEEE Trans. Signal Process..
[25] Y. Zeevi,et al. Analysis of Multiwindow Gabor-Type Schemes by Frame Methods☆ , 1997 .
[26] K. Gröchenig,et al. Wiener algebras of Fourier integral operators , 2013 .
[27] Vincenza Del Prete,et al. Estimates, decay properties, and computation of the dual function for Gabor frames , 1999 .
[28] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[29] Andreas F. Molisch,et al. Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels , 1998, IEEE J. Sel. Areas Commun..
[30] Joachim Stöckler,et al. Zak transforms and Gabor frames of totally positive functions and exponential B-splines , 2013, J. Approx. Theory.
[31] A. Janssen. The Zak transform : a signal transform for sampled time-continuous signals. , 1988 .
[32] H. Hotelling. Some New Methods in Matrix Calculation , 1943 .
[33] George G. Lorentz,et al. Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.
[34] Stéphane Jaffard. Propriétés des matrices « bien localisées » près de leur diagonale et quelques applications , 1990 .
[35] Zhangang Han,et al. Feature extraction of EEG signals from epilepsy patients based on Gabor Transform and EMD Decomposition , 2010, 2010 Sixth International Conference on Natural Computation.
[36] A. Janssen. Duality and Biorthogonality for Weyl-Heisenberg Frames , 1994 .
[37] Gerald Matz,et al. Wireless Communications Over Rapidly Time-Varying Channels , 2011 .
[38] Steffen Roch,et al. C* - Algebras and Numerical Analysis , 2000 .
[39] A. Janssen. SOME ITERATIVE ALGORITHMS TO COMPUTE CANONICAL WINDOWS FOR GABOR FRAMES , 2007 .
[40] I. J. Schoenberg. On Totally Positive Functions, LaPlace Integrals and Entire Functions of the LaGuerre-Polya-Schur Type. , 1947, Proceedings of the National Academy of Sciences of the United States of America.
[41] Nicki Holighaus,et al. Theory, implementation and applications of nonstationary Gabor frames , 2011, J. Comput. Appl. Math..
[42] Yiyan Wu,et al. COFDM: an overview , 1995, IEEE Trans. Broadcast..
[43] Helmut Bölcskei,et al. Discrete Zak transforms, polyphase transforms, and applications , 1997, IEEE Trans. Signal Process..
[44] Thomas Strohmer,et al. Numerical algorithms for discrete Gabor expansions , 1998 .
[45] C. R. Deboor,et al. A practical guide to splines , 1978 .
[46] A. Baskakov,et al. Wiener's theorem and the asymptotic estimates of the elements of inverse matrices , 1990 .
[47] Christina Gloeckner. Foundations Of Time Frequency Analysis , 2016 .
[48] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[49] G. Schulz. Iterative Berechung der reziproken Matrix , 1933 .
[50] Norbert Kaiblinger,et al. Approximation of the Fourier Transform and the Dual Gabor Window , 2005 .