Implementation of Discretized Gabor Frames and Their Duals

The usefulness of Gabor frames depends on the easy computability of a suitable dual window. This question is addressed under several aspects. Several versions of Schulz's iterative algorithm for the approximation of the canonical dual window are analyzed for their numerical stability. For Gabor frames with totally positive windows or with exponential B-splines, a direct algorithm yields a family of exact dual windows with compact support. It is shown that these dual windows converge exponentially fast to the canonical dual window.

[1]  I. J. Schoenberg On Pólya Frequency Functions , 1988 .

[2]  O. Christensen,et al.  Approximation of the Inverse Frame Operator and Applications to Gabor Frames , 2000 .

[3]  T. Strohmer Approximation of Dual Gabor Frames, Window Decay, and Wireless Communications , 2000, math/0010244.

[4]  Helmut Bölcskei,et al.  Design of pulse shaping OFDM/OQAM systems for high data-rate transmission over wireless channels , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[5]  Nicki Holighaus,et al.  The Large Time-Frequency Analysis Toolbox 2.0 , 2013, CMMR.

[6]  P. C. Russell,et al.  Extraction of information from acoustic vibration signals using Gabor transform type devices , 1998 .

[7]  Manfred Martin Hartmann,et al.  Analysis, Optimization, and Implementation of Low-Interference Wireless Multicarrier Systems , 2007, IEEE Transactions on Wireless Communications.

[8]  K. Grōchenig,et al.  Gabor Frames and Totally Positive Functions , 2011, 1104.4894.

[9]  W. Marsden I and J , 2012 .

[10]  Amos Ron,et al.  Exponential box splines , 1988 .

[11]  Blanco,et al.  Time-frequency analysis of electroencephalogram series. II. Gabor and wavelet transforms. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Peter L. Søndergaard,et al.  Gabor frames by sampling and periodization , 2007, Adv. Comput. Math..

[13]  Helmut Boelcskei Efficient design of pulse-shaping filters for OFDM systems , 1999, Optics & Photonics.

[14]  A. Aldroubi,et al.  SLANTED MATRICES, BANACH FRAMES, AND SAMPLING , 2007, 0705.4304.

[15]  Karlheinz Gröchenig,et al.  Convergence Analysis of the Finite Section Method and Banach Algebras of Matrices , 2010 .

[16]  Nira Dyn,et al.  Recurrence relations for Tchebycheffian B-splines , 1988 .

[17]  Karlheinz Gröchenig,et al.  Discretized Gabor Frames of Totally Positive Functions , 2013, IEEE Transactions on Information Theory.

[18]  Peter L. Søndergaard,et al.  Iterative Algorithms to Approximate Canonical Gabor Windows: Computational Aspects , 2006 .

[19]  Zeros of the Zak Transform of Totally Positive Functions , 2014, 1411.1539.

[20]  Monika Dörfler,et al.  Time-Frequency Analysis for Music Signals: A Mathematical Approach , 2001 .

[21]  Peter Massopust,et al.  Exponential B-splines and the partition of unity property , 2012, Adv. Comput. Math..

[22]  K. A. Narayanankutty,et al.  Spectrally Efficient Multi-Carrier Modulation Using Gabor Transform , 2013 .

[23]  Yonina C. Eldar,et al.  Dual Gabor frames: theory and computational aspects , 2005, IEEE Transactions on Signal Processing.

[24]  Karlheinz Gröchenig,et al.  Acceleration of the frame algorithm , 1993, IEEE Trans. Signal Process..

[25]  Y. Zeevi,et al.  Analysis of Multiwindow Gabor-Type Schemes by Frame Methods☆ , 1997 .

[26]  K. Gröchenig,et al.  Wiener algebras of Fourier integral operators , 2013 .

[27]  Vincenza Del Prete,et al.  Estimates, decay properties, and computation of the dual function for Gabor frames , 1999 .

[28]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[29]  Andreas F. Molisch,et al.  Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels , 1998, IEEE J. Sel. Areas Commun..

[30]  Joachim Stöckler,et al.  Zak transforms and Gabor frames of totally positive functions and exponential B-splines , 2013, J. Approx. Theory.

[31]  A. Janssen The Zak transform : a signal transform for sampled time-continuous signals. , 1988 .

[32]  H. Hotelling Some New Methods in Matrix Calculation , 1943 .

[33]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[34]  Stéphane Jaffard Propriétés des matrices « bien localisées » près de leur diagonale et quelques applications , 1990 .

[35]  Zhangang Han,et al.  Feature extraction of EEG signals from epilepsy patients based on Gabor Transform and EMD Decomposition , 2010, 2010 Sixth International Conference on Natural Computation.

[36]  A. Janssen Duality and Biorthogonality for Weyl-Heisenberg Frames , 1994 .

[37]  Gerald Matz,et al.  Wireless Communications Over Rapidly Time-Varying Channels , 2011 .

[38]  Steffen Roch,et al.  C* - Algebras and Numerical Analysis , 2000 .

[39]  A. Janssen SOME ITERATIVE ALGORITHMS TO COMPUTE CANONICAL WINDOWS FOR GABOR FRAMES , 2007 .

[40]  I. J. Schoenberg On Totally Positive Functions, LaPlace Integrals and Entire Functions of the LaGuerre-Polya-Schur Type. , 1947, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Nicki Holighaus,et al.  Theory, implementation and applications of nonstationary Gabor frames , 2011, J. Comput. Appl. Math..

[42]  Yiyan Wu,et al.  COFDM: an overview , 1995, IEEE Trans. Broadcast..

[43]  Helmut Bölcskei,et al.  Discrete Zak transforms, polyphase transforms, and applications , 1997, IEEE Trans. Signal Process..

[44]  Thomas Strohmer,et al.  Numerical algorithms for discrete Gabor expansions , 1998 .

[45]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[46]  A. Baskakov,et al.  Wiener's theorem and the asymptotic estimates of the elements of inverse matrices , 1990 .

[47]  Christina Gloeckner Foundations Of Time Frequency Analysis , 2016 .

[48]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[49]  G. Schulz Iterative Berechung der reziproken Matrix , 1933 .

[50]  Norbert Kaiblinger,et al.  Approximation of the Fourier Transform and the Dual Gabor Window , 2005 .