Game-Theoretic Integration for Image Segmentation

Robust segmentation of structures from an image is essential for a variety of image analysis problems. However, the conventional methods of region-based segmentation and gradient-based boundary finding are often frustrated by poor image quality. Here we propose a method to integrate the two approaches using game theory in an effort to form a unified approach that is robust to noise and poor initialization. This combines the perceptual notions of complete boundary information using edge data and shape priors with gray-level homogeneity using two computational modules. The novelty of the method is that this is a bidirectional framework, whereby both computational modules improve their results through mutual information sharing. A number of experiments were performed both on synthetic datasets and datasets of real images to evaluate the new approach and it is shown that the integrated method typically performs better than conventional gradient-based boundary finding.

[1]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Alfred O. Hero,et al.  On achievable accuracy in edge localization , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[3]  Benjamin B. Kimia,et al.  Image segmentation by reaction-diffusion bubbles , 1995, Proceedings of IEEE International Conference on Computer Vision.

[4]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[6]  R. Kohler A segmentation system based on thresholding , 1981 .

[7]  Andrew K. C. Wong,et al.  A gray-level threshold selection method based on maximum entropy principle , 1989, IEEE Trans. Syst. Man Cybern..

[8]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[9]  Azriel Rosenfeld,et al.  Segmentation and Estimation of Image Region Properties through Cooperative Hierarchial Computation , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[11]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[12]  James S. Duncan,et al.  Modular system for image analysis using a game-theoretic framework , 1992, Image Vis. Comput..

[13]  Jake K. Aggarwal,et al.  The Integration of Image Segmentation Maps using Region and Edge Information , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[15]  James S. Duncan,et al.  Boundary Finding with Parametrically Deformable Models , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Yu-Chi Ho,et al.  Team decision theory and information structures , 1980 .

[18]  T. Başar An equilibrium theory for multiperson decision making with multiple probabilistic models , 1985, IEEE Transactions on Automatic Control.

[19]  Josef Kittler,et al.  On threshold selection using clustering criteria , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[20]  Anil K. Jain,et al.  Segmentation of document images , 1989, SMC.

[21]  Martin D. Levine,et al.  Dynamic Measurement of Computer Generated Image Segmentations , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[23]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Tai Sing Lee,et al.  Region competition: unifying snakes, region growing, energy/Bayes/MDL for multi-band image segmentation , 1995, Proceedings of IEEE International Conference on Computer Vision.

[26]  Demetri Terzopoulos,et al.  Topologically adaptable snakes , 1995, Proceedings of IEEE International Conference on Computer Vision.

[27]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[28]  H.I. Bozma,et al.  A Game-Theoretic Approach to Integration of Modules , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  T. Başar,et al.  Dynamic Noncooperative Game Theory , 1982 .

[30]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[31]  É. Borel The Theory of Play and Integral Equations with Skew Symmetric Kernels , 1953 .

[32]  Tamer Basar,et al.  Distributed algorithms for the computation of noncooperative equilibria , 1987, Autom..

[33]  Tomaso A. Poggio,et al.  On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Theodosios Pavlidis,et al.  Integrating Region Growing and Edge Detection , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[36]  James S. Duncan,et al.  Deformable boundary finding influenced by region homogeneity , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[37]  I G Zubal,et al.  The technetium-99m-DTPA renal uptake-plasma volume product: a quantitative estimation of glomerular filtration rate. , 1992, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[38]  Rama Chellappa,et al.  Unsupervised Texture Segmentation Using Markov Random Field Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  James S. Duncan,et al.  Deformable boundary finding in medical images by integrating gradient and region information , 1996, IEEE Trans. Medical Imaging.

[40]  John F. Haddon,et al.  Image Segmentation by Unifying Region and Boundary Information , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[43]  Philip M. Morse,et al.  Introduction to the Theory of Games , 1952 .