Nonaxisymmetric drop shape analysis and its application for determination of the local contact angles.

We describe here a numerical method for finding the local contact angles of a drop in the case of partial wetting for given values of the drop volume and capillary length when there are data available for the whole contact line of the drop. There are no special restrictions imposed on the type of the contact line: the solid substrate on which the drop rests can be heterogeneous or rough or both, it can be horizontal or tilted. The method is intended to be used in conjunction with experimental results similarly to the axisymmetric drop shape analysis-diameter (ADSA-D) and analysis-profile (ADSA-P) methods. The numerical method is essentially an iterative minimization procedure based on the local variations approach. It allows finding drop shapes which are not axially symmetric. The contact angles are then determined from the obtained shape of the drop. Several examples of applying the method are described for a drop on: flat, horizontal but heterogeneous substrate; flat, tilted substrate, and grooved horizontal substrate.

[1]  Iliev The Effects of Resistance to Shift of the Equilibrium State of a Liquid Droplet in Contact with a Solid. , 1999, Journal of colloid and interface science.

[2]  Stanimir D. Iliev and,et al.  Wetting Properties of Well-Structured Heterogeneous Substrates , 2003 .

[3]  Robert A. Brown Finite-element methods for the calculation of capillary surfaces , 1979 .

[4]  R. Hidalgo-Álvarez,et al.  Contact angle measurements on two (wood and stone) non-ideal surfaces , 2002 .

[5]  D. Möbius,et al.  Drops and bubbles in interfacial research , 1998 .

[6]  Reinhard Lipowsky,et al.  Wetting morphologies at microstructured surfaces. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  L. Limat,et al.  Probing with a laser sheet the contact angle distribution along a contact line. , 2004, Journal of colloid and interface science.

[8]  Abraham Marmur,et al.  Partial wetting of chemically patterned surfaces: the effect of drop size. , 2003, Journal of colloid and interface science.

[9]  L. E. Scriven,et al.  Static drop on an inclined plate: Analysis by the finite element method , 1980 .

[10]  Nicole M Dingle,et al.  A robust algorithm for the simultaneous parameter estimation of interfacial tension and contact angle from sessile drop profiles. , 2005, Journal of colloid and interface science.

[11]  S. Herminghaus,et al.  Liquid flow in wetting layers on rough substrates , 2001 .

[12]  Dongqing Li,et al.  Determination of line tension from the drop size dependence of contact angles , 1990 .

[13]  Shear flow over a liquid drop adhering to a solid surface , 1996 .

[14]  O. Basaran,et al.  A finite element based algorithm for determining interfacial tension (gamma) from pendant drop profiles. , 2005, Journal of colloid and interface science.

[15]  Asa H Barber,et al.  Static and dynamic wetting measurements of single carbon nanotubes. , 2004, Physical review letters.

[16]  Dongqing Li Drop size dependence of contact angles and line tensions of solid-liquid systems , 1996 .

[17]  A. Marmur,et al.  The exponential power law: partial wetting kinetics and dynamic contact angles , 2004 .

[18]  R. M. Prokop,et al.  Interfacial tension from the height and diameter of sessile drops and captive bubbles with an arbitrary contact angle , 1996 .

[19]  Y. Rotenberg,et al.  The shape of nonaxisymmetric drops on inclined planar surfaces , 1984 .

[20]  B. Andreotti,et al.  Boundary conditions in the vicinity of a dynamic contact line: experimental investigation of viscous drops sliding down an inclined plane. , 2005, Physical review letters.

[21]  J. Higdon,et al.  On the gravitational displacement of three-dimensional fluid droplets from inclined solid surfaces , 1999, Journal of Fluid Mechanics.

[22]  E. Delamarche,et al.  Patterned delivery of immunoglobulins to surfaces using microfluidic networks. , 1997, Science.

[23]  Lenz,et al.  Liquid morphologies on structured surfaces: from microchannels to microchips , 1999, Science.

[24]  H. Jacobasch,et al.  Contact angle measurements and contact angle interpretation : 1. Contact angle measurements by axisymmetric drop shape analysis and a goniometer sessile drop technique , 1997 .

[25]  Nengli Zhang,et al.  A new laser shadowgraphy method for measurements of dynamic contact angle and simultaneous flow visualization in a sessile drop , 2002 .

[26]  M. J. Jaycock,et al.  Chemistry of interfaces , 1981 .

[27]  Iliev Static Drops on an Inclined Plane: Equilibrium Modeling and Numerical Analysis , 1997, Journal of colloid and interface science.

[28]  C. S. Chen,et al.  Geometric control of cell life and death. , 1997, Science.

[29]  Kenneth A. Brakke,et al.  The Surface Evolver , 1992, Exp. Math..

[30]  George M. Whitesides,et al.  Wetting characteristics of liquid drops at heterogeneous surfaces , 1994 .

[31]  Dongqing Li,et al.  Contact angle measurement by axisymmetric drop shape analysis (ADSA) , 1992 .

[32]  A. Adamson Physical chemistry of surfaces , 1960 .

[33]  Stanimir Iliev,et al.  Iterative method for the shape of static drops , 1995 .

[34]  R. Wadhwa,et al.  Low-Gravity Fluid Mechanics , 1987 .

[35]  K. J. Ives,et al.  Experimental Methods (2) , 1978 .

[36]  E. J. Hinch,et al.  Numerical simulation of a concentrated emulsion in shear flow , 1996, Journal of Fluid Mechanics.

[37]  H. Mittelmann,et al.  The augmented skeleton method for parametrized surfaces of liquid drops , 1989 .

[38]  V. Nikolayev,et al.  Quasistatic relaxation of arbitrarily shaped sessile drops. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  A. Neumann,et al.  Correlation of Line Tension and Solid-Liquid Interfacial Tension from the Measurement of Drop Size Dependence of Contact Angles , 1995 .

[40]  Robert Finn,et al.  Equilibrium Capillary Surfaces , 1985 .

[41]  Sandra M. Troian,et al.  Patterning liquid flow on the microscopic scale , 1999, Nature.

[42]  Gershon Wolansky† and,et al.  The actual contact angle on a heterogeneous rough surface in three dimensions , 1998 .