On classical capacities of infinite-dimensional quantum channels

A coding theorem for entanglement-assisted communication via an infinite-dimensional quantum channel with linear constraints is extended to a natural degree of generality. Relations between the entanglement-assisted classical capacity and χ-capacity of constrained channels are obtained, and conditions for their coincidence are given. Sufficient conditions for continuity of the entanglement-assisted classical capacity as a function of a channel are obtained. Some applications of the obtained results to analysis of Gaussian channels are considered. A general (continuous) version of the fundamental relation between coherent information and the measure of privacy of classical information transmission via an infinite-dimensional quantum channel is proved.

[1]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[2]  M. E. Shirokov On quantum channels reversible with respect to a given family of pure states , 2012 .

[3]  Michael D. Westmoreland,et al.  Optimal signal ensembles , 1999, quant-ph/9912122.

[4]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[5]  C. Adami,et al.  VON NEUMANN CAPACITY OF NOISY QUANTUM CHANNELS , 1996 .

[6]  Michael D. Westmoreland,et al.  Quantum Privacy and Quantum Coherence , 1997, quant-ph/9709058.

[7]  Ashish V. Thapliyal,et al.  Entanglement-Assisted Classical Capacity of Noisy Quantum Channels , 1999, Physical Review Letters.

[8]  А А Кузнецова,et al.  Условная энтропия для бесконечномерных квантовых систем@@@The weak zero-one law for the random distance graphs , 2010 .

[9]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[10]  A. A. Kuznetsova Conditional Entropy for Infinite-Dimensional Quantum Systems , 2010, 1004.4519.

[11]  Masanori Ohya,et al.  Quantum Capacity of Noisy Quantum Channel , 1997 .

[12]  Александр Семенович Холево,et al.  Классические пропускные способности квантового канала с ограничением на входе@@@Entanglement-assisted capacities of constrained quantum channels , 2003 .

[13]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[14]  D. Leung,et al.  Continuity of Quantum Channel Capacities , 2008, 0810.4931.

[15]  Alexander Semenovich Holevo,et al.  Continuous Ensembles and the Capacity of Infinite-Dimensional Quantum Channels , 2006 .

[16]  Maksim E. Shirokov Conditions for coincidence of the classical capacity and entanglement-assisted capacity of a quantum channel , 2012, Probl. Inf. Transm..

[17]  Александр Семенович Холево,et al.  Комплементарные каналы и проблема аддитивности@@@Complementary channels and the additivity problem , 2006 .

[18]  Alexander S. Holevo,et al.  On approximation of infinite-dimensional quantum channels , 2008, Probl. Inf. Transm..

[19]  A. S. Holevo Complementary Channels and the Additivity Problem , 2005 .

[20]  Александр Семенович Холево,et al.  Непрерывные ансамбли и пропускная способность квантовых каналов бесконечной размерности@@@Continuous ensembles and the capacity of infinite-dimensional quantum channels , 2005 .

[21]  G. Lindblad Expectations and entropy inequalities for finite quantum systems , 1974 .

[22]  Alexander S. Holevo,et al.  Mutual and coherent information for infinite-dimensional quantum channels , 2010, Probl. Inf. Transm..