Stochastic thermostats: comparison of local and global schemes

Abstract We show that a recently introduced stochastic thermostat [J. Chem. Phys. 126 (2007) 014101] can be considered as a global version of the Langevin thermostat. We compare the global scheme and the local one (Langevin) from a formal point of view and through practical calculations on a model Lennard–Jones liquid. At variance with the local scheme, the global thermostat preserves the dynamical properties for a wide range of coupling parameters, and allows for a faster sampling of the phase-space.

[1]  M. Parrinello,et al.  Accurate sampling using Langevin dynamics. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[3]  Michele Parrinello,et al.  Molecular dynamics study of the solvation of calcium carbonate in water. , 2007, The journal of physical chemistry. B.

[4]  G. Galli,et al.  Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the boltzmann transport equation. , 2007, Physical review letters.

[5]  M. Parrinello,et al.  Well-tempered metadynamics: a smoothly converging and tunable free-energy method. , 2008, Physical review letters.

[6]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[7]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[8]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[9]  Glenn J. Martyna,et al.  Molecular dynamics simulations of a protein in the canonical ensemble , 1993 .

[10]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[11]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[12]  T. Schneider,et al.  Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions , 1978 .

[13]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.